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S1. DETAILS OF DFPT FORMALISM

We will perform our derivation and ultimately our calculations in the framework of planewave/pseudopotential
Kohn-ShamS1 DFT. Thus ψnk(r) = unk(r)eik·r corresponds to the single-particle wavefunction of band n and wavevec-
tor k in the first Brillouin zone that is the solution of the Kohn-Sham equation with the single particle Hamiltonian

Ĥ = T̂ + V̂Hxc[ρ] + V̂ext, (S1)

where T̂ is the single-particle kinetic energy, V̂Hxc[ρ] denotes the Hartree and exchange-correlation (Hxc) potential,

which is a functional of the density ρ, and V̂ext is the external potential that includes the pseudopotential operators
(local and nonlocal). We will often use the “cell-periodic” version of operators: Ôk = e−ik·rÔeik·r which operate on
the cell-periodic functions unk(r).

A. Generalized susceptibility

We begin with the generalized susceptibility introduced in the main text, and partition it in the following way

χna
λ1λ2

(ω,q) = χgeom
λ1λ2

(q) + χKubo
λ1λ2

(ω,q). (S2)

The “geometric” contribution only depends on the unperturbed density operator, ρ̂, and is independent of ω. Taking
immediately the limit of q→ 0,

χgeom
λ1λ2

= Tr
(
Ĥλ1λ2

k ρ̂
)
, ρ̂k =

∑

n

|unk〉fnk〈unk|, (S3)

where Ĥλ1λ2

k = ∂2Ĥk/∂λ1∂λ2 is the second derivative of the external potential (i.e., not containing the SCF part),
and fnk is the occupation of band n at k-point k. Note that the trace implicitly consists of a sum over bands and
Brillouin-zone average,

Tr
(
ÂB̂
)

=

∫
[d3k]

∑

mn

〈umk|Âk|unk〉〈unk|B̂k|umk〉. (S4)

The second term in Eq. (S2) can be written as

χKubo
λ1λ2

(ω,q) = Tr
[
Ĥλ1†

k,q ρ̂
λ2(ω,q)

]
, (S5)

where the first-order density matrix is written as a double sum over states

ρ̂λk(ω,q) = lim
η→0

∑

nm

f̄nmk(ω + iη,q)|umk+q〉〈umk+q|Ĥλk,q(ω)|unk〉〈unk|, (S6)

with

f̄nmk(z,q) =
fnk − fmk+q

εnk − εmk+q + z
. (S7)
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Note that the first-order Hamiltonian becomes ω-dependent via the charge self-consistency once the local fields are
incorporated,

Ĥλ(ω) = Ĥλ + V̂ λHxc(ω) (S8)

where Ĥλ is the kinetic energy and external potential perturbation, and V̂ λHxc is the potential response containing
self-consistent fields (SCF) that depends on the first-order density, ρλq(r, ω) = 〈r| ρ̂λ2(ω,q)|r〉 as

V̂ λHxc(r, ω) =

∫
d3r′KHxc(r, r

′)ρλ,ω(r, ω), (S9)

where KHxc is the Hxc kernel, defined as the variation of the SCF potential with respect to a charge-density pertur-
bation.

B. Adiabatic regime

If we take ω → 0, the intraband contribution in Eq. (S5) remains finite, and

fnnk →
df(ε)

dε

∣∣∣∣∣
ε=εnk

. (S10)

Then, for a q = 0 perturbation, we obtain the adiabatic response,

χad
λ1λ2

= Tr

[
∂

∂λ2

(
ρ̂Ĥλ1

)]
. (S11)

Note that χad
λ1λ2

is written as a total derivative with respect to one of the perturbations. This means that, if either
the λ1 or λ2 is a vector potential field, the corresponding perturbation reduces to a partial derivative with respect to
kα, and its BZ average vanishes. Physically, the fact that χad

AαAβ
vanishes is a direct consequence of the f -sum rule;

the result χad
Aατκβ

= 0, on the other hand, tells us that a static atomic displacement cannot produce a steady current.

χad
τκατκ′β

does not vanish: it is the electronic contribution to the adiabatic force-constant matrix, as it is calculated in

most linear-response DFT packages.S2–S4

C. Nonadiabatic response

When considering, e.g., optical phonons in polar crystal lattices, or the response to electromagnetic radiation, it is
appropriate to reverse the order of the q→ 0 and ω → 0 limits. The intraband contributions to Eq. (S5) is suppressed
in the q→ 0 limit, thus, we obtain a nonadiabatic response function as the interband part of the adiabatic one, i.e.,
by replacing ρ̂λ2 in Eq. (S5) with

ρ̂λ2,inter
k =

∑

n 6=m

f
k

nm|umk〉〈umk|Ĥλ2

k |unk〉〈unk|. (S12)

Note that, in principle, the intraband contribution to the first-order charge density should be removed as well, i.e., the

adiabatic scattering potential Ĥλ2 should be replaced with Ĥλ2,inter = Ĥλ2 + V̂ λ2,inter
Hxc , and V̂ λ2,inter

Hxc is defined from
ρλ2,inter(r) via Eq. (S9). While taking this extra step would be desirable, as it would lead to a fully self-consistent
computational setup, it would also substantially complicate the implementation; therefore, in our calculations we
have retained the adiabatic phonon perturbation, Ĥλ2 , for simplicity. We believe, in fact, that our calculations are
unaffected by such a simplifying assumption, as we shall clarify in the following.

At small (but finite) q, correctly treating the intraband contribution to the density in the SCF cycles may be
important. Whether free carriers participate (full adiabatic density) or do not participate (nonadiabatic interband-
only density) to screening a phonon perturbation has obviously a crucial impact on the macroscopic electric fields
that are produced, e.g., by a long-wavelength LO mode. Right at the zone center, however, and under the assumption
of short-circuit electrical boundary conditions (as required by the definition of the Born dynamical charge tensor),
neglecting the nonadiabatic correction to the SCF potential is much safer, since it may only lead to a small discrepancy
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in the first-order potential that averages to zero over the cell. Furthermore, in presence of space-inversion symmetry,
infrared-active modes (i.e., the only ones carrying a nonzero dynamical charge) do not couple with Fermi-level shifts,
and hence their intraband contribution to the density response should vanish. This indicates that our calculations
(all performed on centrosymmetric crystals) should not be affected by this issue.

1. Drude weight

Consider the case where both λ1 and λ2 are components of the vector potential. The total density response to
a translation in k-space vanishes, so the interband contribution to the density response is minus the intraband one.
Also, the density response, and thus the SCF contributions vanish if TRS is present (since fnnk and |unk(r)|2 are

even under k→ −k, while 〈unk|ĤAα
k |unk〉 is odd). Thus, the response reduces to the familiar Drude expression (e.g,

see Ref. S5),

χna
AαAβ

= −
∫

[d3k]fnnk〈unk|Ĥ
Aα
k |unk〉〈unk|Ĥ

Aβ
k |unk〉

= −
∫

[d3k]fnnk
∂εnk
∂kα

∂εnk
∂kβ

=
Ω

π
Dαβ ,

(S13)

where Ω is the cell volume. Dαβ is the “Drude weight.” This corresponds to the optical conductivity multiplied by
iω. The Drude weight is nonzero in all metals, regardless of crystal symmetry, which is seen by realizing that the
square of the Fermi velocities in Eq. (S13) is even under k→ −k even if the crystal has TR and inversion symmetry.

As discussed in the main text, we will also consider a “modified” version of the Drude weight, given by

Ω

π
D̃αβ = −

∫
[d3k]fnnk〈unk|Ĥ

Aα
k |unk〉〈unk|p̂βk|unk〉 (S14)

where p̂β,k = −i∇β + k̂β is the canonical momentum operator.

2. Born effective charges

We will now derive the nonadiabatic response at first order in the velocity, valid for the optical conductivity and
the Born effective charges. The derivation rests on the following identity

∆f

∆ε+ z
=

∆f

∆ε

(
1− z

∆ε+ z

)
. (S15)

The first term in the round brackets does not depend on frequency; summed with the geometric term it yields the
adiabatic response, which vanishes both for the current–current and the current–force response functions. From the
second term in the round brackets we readily obtain, via Eq. (1) of the main text, the established formula for the
optical conductivity (i.e., Eq. (25) of Ref. S6). Similarly, Eq. (2) of the main text yields the electronic contribution
to the Born charges asS7,S8

Z
(α)
κβ (ω + iη), = −1

i

∫
[d3k]

∑

nm

fnmk

εnk − εmk + z
〈unkĤkα†

k |umk〉〈umk|Ĥ
τβ
k (z)|unk〉, (S16)

where Ĥkα
k is the velocity operator and τκβ indicates the displacement of the sublattice κ along the Cartesian direction

β. After taking the ω → 0 limit, we readily obtain the expression for the naBEC given by Eq. (7) of the main text.
In an insulator, Eq. (7) reduces to the usual expressions for the adiabatic BEC.

D. Sums over empty states

If we were to calculate the naBEC using Eq. (7), then we would have to perform a convergence over empty states. In
order to avoid this, we will use the same approach as is common in DFPT, casting the problem in terms of obtaining
first-order wavefunctions via solving a Sternheimer equation. To this end, we shall assume that the active subspace
of states that are treated explicitly in the calculation spans the lowest M orbitals with occupation numbers different
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from zero. Then, we can decompose Eq. (7) into a double sum over the first M states plus two sums over 1, . . . ,M
and M + 1, . . .,

lim
η→0+

∫
[d3k]

∑

n≤M,m≤M

fnmk

εnk − εmk + iη
〈unk|Ĥkα

k |umk〉〈umk|Ĥ
τκβ ,inter
k |unk〉

+

∫
[d3k]

∑

n≤M,m≥M+1

fnk
(εnk − εmk)2

〈unk|Ĥkα
k |umk〉〈umk|Ĥ

τκβ ,inter
k |unk〉

−
∫

[d3k]
∑

m≤M,n≥M+1

fmk

(εnk − εmk)2
〈unk|Ĥkα

k |umk〉〈umk|Ĥ
τκβ ,inter
k |unk〉

(S17)

The second and third terms can be conveniently rewritten as a Berry curvature in parameter space, so the naBEC
can be written as

Z∗α,κβ = Z ion
κ δαβ − Im

[∫
[d3k]

∑

n≤M

fnk

(
〈ukαnk|u

τκβ ,inter
nk 〉 − 〈uτκβ ,internk |ukαnk〉

)

+ lim
η→0+

∫
[d3k]

∑

n≤M,m≤M

fnmk

εnk − εmk + iη
〈unk|Ĥkα

k |umk〉〈umk|Ĥ
τκβ ,inter
k |unk〉

] (S18)

where the first-order wavefunctions are defined via

(Ĥk + aP̂Mk − εnk)|uλnk〉 = −Q̂Mk Ĥλk|unk〉, (S19)

where P̂Mk −
∑M
n |unk〉〈umk| and Q̂Mk = 1− P̂k are projectors inside and outside the active space, and a is a constant

that needs to be larger than the total bandwidth of the active space. Eq. (S19) has the same form as the Sternheimer

equation solved presently in DFPT implementations,S2–S4 except that P̂Mk does not correspond to the ground-state
density operator, but instead the projector over an “active space” M , which is chosen to be large enough to encompass
all states such that the occupation of the Mth band vanishes. We will show in Sec. S1 D that the choice of M does
not influence the final result.

S2. COMPUTATIONAL APPROACH AND CONVERGENCE

A. Computational parameters

We implemented the methodology for calculating the naBEC and DW in the abinit package,S9 taking advantage
of the DFPT implementation for calculating the (static) response to atomic displacements and infinitesimal electric
fields.S3,S4 In all cases, η is fixed to be 10−5 Ha. Optimized Vanderbilt norm-conserving pseudopotentialsS10 taken
from pseudo-dojo are used for all calculations.

For Al, we use the PBES11 generalized-gradient approximation exchange-correlation functional, as it provides better
structural properties compared to LDA (cubic lattice parameter of 7.63 Bohr). We use Fermi-Dirac smearing with a
“temperature” of 0.005 Ha. As mentioned in the main text, k-meshes up to 28×28×28 were used. For the calculation
of the naBEC, we used an active space of M = 40 bands; we show in Fig. S1 that the total naBEC does not depend on
such choice, as long as enough bands are included such that the occupation of the highest band is negligible (M ≥ 20
for the conventional cubic cell).

For cubic (Pm3m) SrTiO3 (STO) and SnS2, the local density approximation (LDA) functional parametrized in
Ref. S12 was used (as they provide better structural properties than GGA for these materials). The relaxed lattice
parameter(s) for STO was 7.29 Bohr and for SnS2 were a = 6.87 and c = 10.78 Bohr. Gaussian smearing was used
with a width of 0.005 Ha, and a “coarse” k-mesh of 8 × 8 × 8 was used for the undoped calculations for STO and
0.001 Ha and 12 × 12 × 6 for SnS2. (The slightly larger smearing for STO was in order to smooth fluctuations due
to the sharp features in the Fermi surface, see Sec. S2 D) The linear response quantities necessary for the calculation
of the naBEC and DW with electron doping were Wannier interpolated onto a “fine” mesh in k space as discussed in
Sec. S2 B.
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FIG. S1: For cubic cell of FCC Al, the dependence on choice of number of bands in the “active space” M of (a) the
second term in Eq. (S18), (b) the third term in Eq. (S18), (c) the total electronic contribution to the nonadiabatic

Born effective charge.
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FIG. S2: Bandstructure and projected density of states (DOS) for (a) Pm3m SrTiO3 and (b) SnS2. Zero energy for
each is set to the top of the valence band.

B. First-order Wannier functions for interpolation

In order to achieve the meshes in k space necessary to converge the naBEC and DW for the doped semiconductors
STO and SnS2 (see the next section for discussion of the doping), we performed a Wannier interpolation of the
quantities in Eqs. (S18), and (S13). Maximally-localized Wannier functions are generated using the Wannier90S13

interface with abinit for the valence bands as well as the three lowest-lying conduction bands for STO [Fig. S2(a)],
and single lowest-lying conduction band for SnS2 [Fig. S2(b)]. In order to ensure that the a consistent gauge is
used, DFPT calculations are initiated from the same ground-state wavefunctions as used for the Wannierization. The
unitary transformations that produced the Wannier functions of the ground-state Hamiltonian are used to interpolate
the first-order Hamiltonian and wavefunction derivatives (a similar strategy as employed in Refs. S14 and S15) onto
a fine k-mesh. In order to confirm that this procedure is providing a valid localized basis for interpolation, we plot
the decay of the ground state and first-order Hamiltonian matrix elements for STO in real space in Fig. S3 (a similar
behavior is observed for SnS2). For the results in the main text, we use a fine mesh of 100× 100× 100 for STO, and
128× 128× 64 for SnS2.
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FIG. S3: Decay of the real-space matrix elements of (a) the ground state Hamiltonian, (b) atomic displacement
perturbations, (c) velocity operator, (d) momentum operator, and (e), the matrix elements involved in the second

term in Eq. (S18). Blue circles are for undoped STO, orange crosses are doped with La (0.5e per cell) via the virtual
crystal approximation.
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FIG. S4: Band structure using the virtual crystal approximation for SbxSn1−xS2 with various Sb concentrations.
Dotted line is the Fermi level, and energy zero is set to the top of the valence band in all cases.

C. Electron doping

For Figs. 2 and 3 in the main text, SnS2 and STO were doped via the rigid-band approximation, i.e., only the
occupation factors were changed with Fermi level. For STO, doping was performed across the entire Ti 3d t2g
conduction band manifold [see Fig. S2(a)], while for SnS2, the doping was performed across the single conduction
band [see Fig. S2(b)], which has S 3p and Sn 5s character.

We can explore the accuracy of this approximation by comparing with explicit doping via the virtual-crystal
approximation (VCA). To do this, the Sn (Sr) pseudopotential was alchemically mixed with a Sb (La) pseudopotential,
with all structural properties kept fixed. The same Wannier interpolation procedure (Sec. S2 B) was used in these cases
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FIG. S5: Band structure using the virtual crystal approximation for LaxSr1−xTiO3 with various La concentrations.
Dotted line is the Fermi level, and energy zero is set to the top of the valence band in all cases.
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mixing the Sn pseudopotential with Sb, and in (c) and (d) mixing Sr with La.

as in the rigid-band calculations. In Figs. S4 and S5, we show that the band structures do not change significantly
with doping via VCA (as long as the structural parameters are fixed). From, e.g., Fig. S4(d), we do see some subtle
changes at large doping for SnS2, i.e., it can be seen from the DOS that as the S p/Sn s conduction band is filled, the
splitting to the S p valence band decreases slightly.

In Fig. S3 we compare the ground state (panel a) and first-order matrix elements that make up the naBEC and
Drude weight (panels b-e) calculated for undoped STO (blue circles) and VCA La0.5Sr0.5Ti3 (orange crosses). Overall,
there is good agreement between the two cases, even for such a large doping; the spatial decay is somewhat reduced
for the VCA doped case, which is likely due to slightly less localized Wannier functions in the metallic case.

In Fig. S6 we compare the naBECs and sum rule for SnS2 and STO calculated with the VCA (points) and rigid-
band approximations (curves, same as Figs. 2 and 3 in the main text). We can see that the agreement is excellent
at low doping. At higher doping there are some quantitative differences. In the case of SnS2, there are some small
deviations at 50% Sb doping in the z components of the naBEC; for STO at 50% La doping, the total naBEC and
Drude weight are slightly larger than for the rigid-band approximation. However, crucially, the naBEC sum rule is
accurately satisfied in both cases, and thus does not depend on how we apply the doping. The increased scatter in
the VCA points does indicate more challenging convergence when the dopant electrons are explicitly included.

D. Convergence of nonadiabatic Born effective charges and Drude Weight

In this section we explore the numerical convergence of the naBECs and DW. In Fig. S7 we plot the convergence
of the electronic part of the naBECs with interpolated k mesh. We plot separately the second [Fig. S7(a)] and third
[Fig. S7(b)] terms in Eq. (S18) (the first ionic term is not included). We can see that the third term, which is nonzero
only when empty bands are included in the active space, is the most difficult to converge especially as the van Hove
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FIG. S7: Convergence of the electronic part of the naBECs of STO with interpolated k mesh. (a) is the second
term in Eq. (S18), (b) is the third term in Eq. (S18), and (c) is the total electronic contribution to the nonadiabatic
Born effective charge. The density of states of the Ti t2g manifold is superimposed, and the thermal smearing is set

to σ = 0.005 Ha.
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FIG. S8: Same as Fig. S7, demonstrating convergence with respect to thermal spearing, σ (k mesh is fixed to
100× 100× 100).

singularity (vHS) is approached. In Fig. S8, we plot the convergence of the naBEC for STO with respect to the width
of the Gaussian smearing σ. Similarly to the case with k mesh, the third term in Eq. (S18) shows oscillations for
lower meshes as the vHS is approached, that are smoothed with larger smearings. These oscillations could also be
removed with larger k meshes.

We turn now to the convergence of Drude weight (DW), and the naBEC sum rule. In the main text, two versions
of of the DW are discussed, i.e., whether the perturbation and response are both taken to be the velocity operators
(“velocity-velocity”, which we will denote here as D), or the velocity operator and momentum operator (“velocity-

momentum”, which we will denote here as D̃). The velocity and momentum operators differ in our density-functional
theory calculations since the pseudopotentials contain nonlocal potentials.S16–S19

In Fig. S9(a) we plot the sublattice sum of the naBEC (including the ionic contribution) for different interpolated
k meshes; we see that this sum converges quite rapidly. In Fig. S9(b) and (c) we demonstrate the naBEC sum rule.
This also converges quickly with k-mesh. Also, we clearly see that the standard DW violates the naBEC sum rule,

which is accuratly satisified by the D̃ version. In Fig. S10, we plot the convergence of the same quantities with the
smearing. As with the naBECs, we see that a σ of 0.005 Ha is required to smooth the oscillations in the sum rule for
a k mesh of 100× 100× 100. A larger mesh would allow us to use a smaller smearing.

The convergence behavior is overall quite similar for SnS2. For example, in Fig. S11 we show the convergence of the
naBEC sum rule with interpolated k mesh for both the α = β = x̂ [Fig. S11(a)-(c)] and α = β = ẑ [Fig. S11(d)-(f)]
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FIG. S9: (a) Sum of nonadiabatic Born effective charges (naBECs), (b) sum of naBECs and standard
velocity-velocity Drude weight (DW), (c) sum of naBECs and modified momentum-velocity version of DW, for

different k meshes, with the density of states of the Ti t2g manifold superimposed. We set the thermal smearing to
σ = 0.005 Ha
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FIG. S10: Same as Fig. S9, but for different values of the thermal smearing σ with the k-mesh set to 100×100×100.

components. We see the same behavior as for STO, where the naBEC sum rule is most accuratly satisfied for the D̃
version of the DW.
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FIG. S11: For SnS2 using different k meshes, sum of nonadiabatic Born effective charges (naBECs) for the (a) xx
and (d) zz components; (b) and (e): sum of naBECs and velocity-velocity Drude weight (DW); (c) and (f): sum of

naBECs and momentum-velocity version of DW. The Density of states of the isolated conduction band
superimposed. σ = 0.001 Ha for all calculations.
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