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We find that in the mesoscopic regime modification of the material’s surface can induce an ex-
tensive change of the material’s magnetic moment. In other words, perturbation of order N2 atoms
on the surface of a 3-dimensional solid can change the magnetic moment proportionally to N3.
When the solid’s surface is perturbed, it triggers two changes in the magnetization. One arises from
variations of the electron wavefunction and energy, while the other arises from a modification in
the kinetic angular momentum operator. In the macroscopic regime of our model, these two bulk
effects cancel each other, resulting in no impact of the surface perturbation on the magnetization
— consistent with prior work. In the mesoscopic regime, we find a departure from this behavior, as
the cancelation of two terms is not complete.

In a ferromagnet, the magnetic moment primarily
arises from the unequal population of electrons with dif-
ferent spin states. A smaller, but significant contribu-
tion, known as orbital magnetization, originates from
the microscopic spatial motion of electrons throughout
the material. Some of these microscopic orbital elec-
tron currents flow around individual atoms in the bulk,
while other currents traverse the surface of the sample,
as demonstrated in Ref. 1 using a framework of localized
Wannier states. Although only a fraction of electrons
participate in surface currents, their collective effect con-
tributes to the magnetic dipole moment, scaling with the
volume of the sample (area in two dimensions).

The question then arises whether the magnetic mo-
ment of the ferromagnet could be modified by perturbing
surface of the material? For instance, one may wonder
if adsorbing atoms to the surface of a solid could induce
currents and consequently change the magnetic dipole
of the solid, in proportion to the volume of the solid?
In other words, we are asking whether perturbing order
N2 atoms on the surface of a 3-dimensional solid could
change the magnetic moment proportional to N3? Or,
similarly, whether perturbing order N atoms on the edge
of a 2-dimensional solid could change the magnetic mo-
ment in proportion to N2?

The seminal work from Ref. 1 demonstrated that none
of these scenarios are possible for insulating systems. In
an insulating system, the surface currents are quite re-
markably determined by the material properties deep in
the bulk of the material! Intuitively, one would expect
such a statement to also extend to metallic cases. Ref-
erence 2 gives heuristic reasons why magnetization in
a metal is equally well determined by the properties of
the bulk of the material, as in the case of an insulator.
(The same was also suggested for topological insulators
in Refs. 2–4.) Additional support is given by the semi-
classical formulation of orbital magnetization from Ref. 5
as well as the long-wave perturbation from Ref. 6. A
more recent proof that orbital magnetization in a metal
is a bulk property relies on a local measure of the orbital

moment from Refs. 7–9.
In this paper, our focus lies on a distinct range of length

and temperature scales, one that complements the scope
of previous investigations. Previous studies can be ap-
plied to the macroscopic regime, which we define as,

L

vF
� ~

kBT
. (1)

Here vF is the electron’s Fermi velocity and L is a length
of the sample. In other words, in the macroscopic regime,
the electron’s time of flight across the sample (L/vF) ex-
ceeds the time scale associated with the thermal energy
kBT . In the macroscopic regime our findings corroborate
the conclusions drawn in Refs. 1–9. Specifically, the sur-
face modifications does not lead to extensive change in
the magnetization.

Nevertheless, an intriguing situation emerges when we
shift to the opposite regime,
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<
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kBT

, (2)

which we refer to as the mesoscopic regime.[10] Our work
shows that in the mesoscopic regime the surface can in-
deed change the overall magnetic moment of the sample,
in proportion to the volume of the sample.

Before introducing our numerical model, we first moti-
vate it by considering a continuous one-particle effective
Hamiltonian, denoted H0

c , for a periodic infinite solid.
For simplicity we work in two dimensions, but general-
ization to higher dimensions is straightforward. When
dealing with the two-dimensional models, we will refer
to the boundary of this model as edge instead of surface,
which we reserve for three-dimensional solids. To sim-
plify our analysis, throughout this work we neglect spin,
self-consistency, many-electron effects, and disorder. Our
system is assumed to be in thermal equilibrium. We ig-
nore any temperature effects beyond electron occupation
smearing.

The complete basis of the eigenstates of H0
c can be ex-

pressed in the Bloch form, ψk(r) = eik·ruk(r). However,
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not every eigenstate of H0
c has the Bloch form. Gener-

ally, we can construct arbitrary linear combinations of
states that share the same eigenvalue Ek = E, and the
resulting function

φE(r) =

∫ 1

0

eif(s)ψk(s)(r)ds (3)

is a valid eigenstate of H0
c . Here s→ k(s) is a continuous

parameterization of a curve in the Brillouin zone along
which Ek(s) = E. For now we limit f(s) so that f(0) =
f(1). We choose f(s) so that φE(r) is as localized as
possible in the real space.[11] By selecting a fixed f(s),
we create a family of functions, φmE , for any integer m,
defined as follows,

φmE(r) =

∫ 1

0

ei2πmseif(s)ψk(s)(r)ds. (4)

Note, trivially, that 〈φmE |φm′E′〉 = δmm′δEE′ . There-
fore, φmE for all m and E span the same vector space
as the Bloch states.[12] Let us now take H0

c to corre-
spond to the free-electron system with mass me. In
this case φmE(r) in cylindrical coordinates is simply

∼ eimϕJm

(√
2meE
~ r

)
. Here Jm is the Bessel function

of the first kind.
Trivially, the expectation value of the angular momen-

tum operator Lz is

〈φmE |Lz |φmE〉 = ~m. (5)

Therefore, each state φmE carries angular momentum
~m, and orbital magnetic moment µBm. Let us now
confine our system to a circular region with radius R.
From elementary properties of Bessel functions it follows

that states with large enough m, close to R
√
2meE
~ , are

localized near the edge of the sample (r ≈ R). Edge
states therefore carry an angular momentum ~m ∼ R1.
The number of states near the edge also scales as ∼ R1.
Therefore, one might ask whether tweaking the electron
potential V edge near the edge of the sample could modify
edge states and induce a net orbital moment that scales
as ∼ R2? If one could construct an edge potential V edge

satisfying

〈φmE |V edge |φm′E〉 ∼ mδmm′ (6)

then this would be a good candidate edge perturbation,
as it breaks the time-reversal symmetry by differently
acting on state with different m. For example, one of
the effects of this perturbation would be to push m < 0
states below the Fermi level, and m > 0 states above the
Fermi level, thus inducing a net magnetic dipole. [13]

We now attempt to create edge potential satisfying
Eq. 6 in a concrete finite-size model using a numeri-
cally convenient tight-binding approach. To construct
the tight-binding model, we project our continuous free-
electron Hamiltonian H0

c on the basis of a N ×N square

mesh of s-like orbitals separated by a distance a (orbitals
are sketched as black circles in Fig. 1). We label the
orbital at site i as |i〉. For the position operators x
and y, we assume 〈i|x |j〉 = xiδij and 〈i| y |j〉 = yiδij .
For convenience, we work with the centered operators
x̃ = x−∑i xi/N

2 and ỹ = y−∑i yi/N
2. We also define

the following quantity L̃(A) for any operator A,

L̃(A) =
ime

~
(x̃[A, ỹ]− ỹ[A, x̃])

=
ime

~
(x̃Aỹ − ỹAx̃) . (7)

Clearly L̃(H) corresponds to the angular momentum op-
erator for a system described by the Hamiltonian H.

Our general procedure to construct edge potential
V edge for any bulk hamiltonian H0 consists of the fol-
lowing five steps.

Step 1 : choose H0.

Step 2 : construct Hcomm from H0.

Step 3 : construct V edge from L̃(H0).

Step 4 : diagonalize H = H0 +Hcomm + V edge.

Step 5 : compute mdip =
e

2me

∑

n

〈ψn| L̃(H) |ψn〉 fn.

In step 1 of our procedure, for now we choose the simplest
H0, where H0

ij = 〈i|H0 |j〉 = t < 0 for the nearest-
neighbor orbitals i and j, and 0 for any other pair of
orbitals (represented by black lines in Fig. 1).

Now we want to construct an edge potential with the
property given in Eq. 6. At first it is not clear how
to satisfy Eq. 6 in our model, as eigenvectors of H0

don’t have a well-defined angular momentum (our tight-
binding model is projected into a finite square mesh of
orbitals which breaks continuous rotational symmetry).
Therefore, before discussing the edge perturbation, we in
step 2 of our procedure, construct a commutator correc-
tion term Hcomm which ensures that total bulk Hamilto-
nian,

Hbulk = H0 +Hcomm, (8)

at least approximately commutes with the angular mo-
mentum operator, L̃(Hbulk). The straightforward but te-
dious construction of Hcomm is given in the supplement.

The energy spectrum of H0 as a function of N exhibits
some regularity by having spikes in the density of states
separated by ∆ ∼ 1/N . However, the number of states in
between spikes is not strictly zero, and these states don’t
follow an obvious pattern as a function of increasingN . If
we include the Hcomm in our Hamiltonian, we find that it
redistributes the spectrum of the system, creating small
gaps in the spectrum (scaling as ∆ ∼ 1/N), as shown
in the supplement. We find that placing a Fermi level
EF within one of these gaps has the additional benefit
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(a) (b)

FIG. 1. (a) Perturbation V edge, given by Eq. 9, induces
complex phases on hopping elements near the edge. Blue and
red colors represent different signs of effective local magnetic
field on the edge. (b) Perturbation V ′edge, given by Eq. 16,
changes the onsite energies of green and purple orbitals on the
left and right edges. Arrows represent directions of effective
local electric field at the edge. In both cases (a) and (b)
magnitude of effective magnetic and electric fields on the edge
is independent of N .

of stabilizing the finite-size effects in our calculations.
Related finite-size effects for Landau diamagnetism have
also been reported in Refs. 14–18.

Step 3: we now construct edge perturbation

V edge
ij = − eB

2me
SijL̃ij(H

0). (9)

This term introduces complex phases to the hopping el-
ements on the edge of the model. See panel (a) of Fig. 1
for a sketch of the alternating magnetic flux applied to
the edge of the sample.

The Sij term in Eq. 9 ensures that the perturbing po-
tential V edge is zero in the bulk and non-zero only on the
edges.[19] Without including Sij in V edge, the resulting

V edge
ij would represent an approximate interaction term

of the orbital magnetic moment with a spatially uniform
external magnetic field B, as in the study of Landau dia-
magnetism. Trivially, the matrix element of such a per-
turbation is proportional to m, as in Eq. 6.
Step 4: diagonalizing our full Hamiltonian, which in-

cludes both bulk and edge contribution,

(
Hbulk + V edge

)
|ψn〉 = En |ψn〉 (10)

we obtain a set of eigenstates |ψn〉. The largest model
we used has N = 100, corresponding to a system with
10,000 orbitals.[20] We set the Fermi level EF to −2.55 |t|,
placing it within a small energy gap ∆ in the spectrum.

Step 5: the magnetic dipole moment we compute as

mdip =
e

2me

∑

n

〈ψn| L̃(H) |ψn〉 fn. (11)

Here fn is the Fermi-Dirac distribution with effective
smearing of electron occupation by kBT . Figure 2 shows

FIG. 2. Changing order N terms in our two-dimensional
model induces N2 change in the computed magnetic dipole
mdip. Here, the temperature kBT in the Fermi-Dirac distribu-
tion is set to 0. B is chosen so that a2B = 0.2~/e. Fermi level
EF is set to −2.55 |t| so that the electron density is ≈ 0.12/a2.
The parameters t and a are set so that the effective mass at
low doping is the same as the free electron mass. The inset
shows that the second derivative of mdip with respect to N
(scaled by 102) is constant.

the calculated mdip as a function of N . The computed
mdip is clearly extensive for our two-dimensional[21]
model, as it scales nearly perfectly as N2.

However, as we show in the supplement, we find nu-
merically that the N2 scaling persists only when

kBT . 0.2 ∆ ≈ 0.6
|t|
N
. (12)

Since |t| ∼ vF and N ∼ L clearly Eq. 12 is equivalent to
the definition of the mesoscopic regime given by Eq. 2.
In other words, N2 scaling of mdip in our model persists
only in the mesoscopic regime.

Furthermore, we find that mdip can be fitted well to
the following functional form, either in the macroscopic
or the mesoscopic regime,

mdip ∼
N2

1 + exp

[
3.8

kBT

|t|

(
N − 0.6

|t|
kBT

)] . (13)

From this functional form it is clear that mdip ∼ N2

in the mesoscopic regime. More precisely, the following
mesoscopic limit

lim
N→∞

lim
T→0+

mdip

N2
6= 0 (14)

is non-zero. In other words, the N2 scaling of the mag-
netic moment continues for all N , as long as the temper-
ature is small enough. On the other hand, if we swap the
order of limits, the resulting macroscopic limit

lim
T→0+

lim
N→∞

mdip

N2
= 0 (15)
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is now zero. In other words, for any fixed small positive
T there is an N beyond which the magnetic dipole no
longer scales as N2.

In the supplementary material,[22] we provide explicit
numerical values of Hamiltonian matrix elements Hij for
different values of N , as well as a computer code that
diagonalizes Eq. 10, computes Eq. 11, and performs a
range of consistency checks on Hij .

In hindsight, our finding that mdip in a metal is edge
sensitive is perhaps not that surprising considering that
a similar dependence was found for the electric dipole
ddip of a metal. [23] However, importantly, the electric
dipole ddip is edge sensitive in a metal even in a macro-
scopic regime. Therefore, we can naturally ask why, in
the macroscopic regime, mdip from our model behaves
differently from ddip?

To establish a parallel between the electric and mag-
netic dipole, it is instructive to construct an edge po-
tential V ′edge that changes the bulk electric dipole, in
analogy to how V edge changed the bulk magnetic dipole.
To achieve this, we use the following procedure.

Step 1′ : choose H0.

Step 2 ′ : (commutator correction term not needed .)

Step 3′ : construct V ′edge from x̃.

Step 4′ : diagonalize H = H0 + V ′edge.

Step 5′ : compute ddip = e
∑

n

〈ψn| x̃ |ψn〉 fn.

In step 1′, we take the same H0 as before. Step 2′ is not
needed, as we find that a numerically robust N2 scaling
of ddip is present even without commutator correction.

The important difference is in step 3′. Earlier, in the
case of the magnetic dipole, we constructed V edge from
the angular momentum operator L̃(H0), which induced
an effective alternating magnetic field at the edge. Now,
by analogy, in step 3′ we construct the edge potential
from the position operator,

V ′edgeij = −eESix̃iδij , (16)

which induced effective electric fields on the edge, propor-
tional to E . Panel (b) of Fig. 1 shows the sketch of the
effective electric fields near the edge induced by V ′edge.
In Eq. 16 we use Si to ensure that the perturbation po-
tential V ′edge is zero in the bulk. [24]

In the final step (5′) of our procedure, we now com-
pute the expectation value of the electric dipole moment,
ddip = e

∑
n 〈ψn| x̃ |ψn〉 fn. As shown in the supplement,

we find that ddip scales as ∼ N2, even in the macroscopic
regime, as expected based on Ref. [23].

We assign a different behavior of an electrical dipole to
that of a magnetic dipole due to the fact that the mag-
netic dipole in step 5 is computed as a trace over opera-
tor L̃(H) which explicitly includes the edge perturbation

V edge itself,

L̃(H) = L̃(Hbulk) + L̃(V edge). (17)

Therefore, the magnetic dipole mdip can be decomposed
into two contributions. The first is a partial trace of
L̃(Hbulk)

mst
dip =

e

2me

∑

n

〈ψn| L̃(Hbulk) |ψn〉 fn, (18)

and it arises from changes to the electron state (wave-
function and energy) due to edge perturbation V edge.
The second term is a partial trace of L̃(V edge)

mop
dip =

e

2me

∑

n

〈ψn| L̃(V edge) |ψn〉 fn. (19)

and it originates from the change in the angular momen-
tum operator by inclusion of perturbation V edge in the
total Hamiltonian. This term, in the lowest order of per-
turbation theory, can be computed already from the un-
perturbed electron wavefunction and energy.

On the contrary, the electric dipole is calculated in step
5′ as a trace over the position operator x̃, which clearly
does not depend on the edge perturbation V ′edge. There-
fore, the electric dipole is induced in the model only by
changes in the electron wavefunction and energy (anal-
ogous to mst

dip). In the case of the electric dipole, there

are no terms analogous to mop
dip.

Interestingly, we find that both mst
dip and mop

dip are ex-
tensive in the macroscopic regime, on their own. How-
ever, in the macroscopic regime, these two terms exactly
cancel each other, resulting in a nonextensive magnetic
dipole in the macroscopic regime. In contrast, in the
case of the electric dipole, there is only one contribution
(the one coming from changes in the electron’s state), so
there is no cancelation, and the electric dipole remains
edge-sensitive in the macroscopic regime.

In our work, we focus on the simplest choice of H0,
which corresponds to a square lattice with first-neighbor
hoppings. However, the procedure presented in this pa-
per can be done for any H0. An interesting case is
the Haldane model in a topologically nontrivial insulator
phase with a nonzero Chern number.[25] Here, even when
the Fermi level is within the bulk gap and crosses the
topologically protected edge states, we find mdip ∼ N2.
This is numerically robust even without including the
commutator correction term Hcomm.

This work was supported by the NSF DMR-1848074
grant. We acknowledge discussions with R. Wilson and
L. Vuong on inverse Faraday effect as these discussions
have motivated our work.
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I. CONSTRUCTION OF Hcomm

Given a Hamiltonian H0, we wish to construct a commutator correction term Hcomm such that

Hbulk = H0 +Hcomm (1)

approximately commutes with the corresponding angular momentum operator, L̃(Hbulk),
[
Hbulk, L̃(Hbulk)

]
≈ 0. (2)

Inserting the definition of Hbulk from Eq. 1, and using the linearity of L̃, we obtain
[
H0 +Hcomm, L̃(H0) + L̃(Hcomm)

]
≈ 0. (3)

Expanding the second commutator gives us
[
H0 +Hcomm, L̃

(
H0
)]

+
[
H0, L̃ (Hcomm)

]
+
[
Hcomm, L̃(Hcomm)

]
≈ 0. (4)

If we keep only the lowest order in Hcomm, and neglect the last term that is quadratic in Hcomm, we are left with the
following,

[
H0 +Hcomm, L̃

(
H0
)]

+
[
H0, L̃ (Hcomm)

]
≈ 0. (5)

The unknown matrix Hcomm
ij is generally N2 ×N2 = N4 matrix. Therefore, Eq. 5 is a system of N4 linear equations

with N4 unknowns.
However, we can further restrict Hcomm

ij to zero for distant orbitals i and j, making Hcomm a local operator. This

restriction results in a system of only ∼ N2 equations. These equations can be solved using least-square methods.
We perform such a minimization of the left-hand side of Eq. 5 while varying the system size N . Our approach
produces a purely real Hcomm that only includes the first-nearest neighbors. The maximum value of |Hcomm

ij | is 0.5|t|
independently of N . The operator Hcomm

ij breaks periodicity in the bulk of the sample and resembles the functional
form of a parabolic well. The approximate form of Hcomm is provided in the following section. This form was obtained
by fitting the results of our procedure for low N .

II. APPROXIMATE FORM OF Hcomm
ij

The coordinate of orbital i is (xi, yi), as discussed in the main text. The allowed values of xi and yi are 0, a, 2a,
. . ., (N − 1)a. Now let us introduce the following useful notation,

dxi = min [xi, (N − 1)a− xi] , dyi = min [yi, (N − 1)a− yi] . (6)

The quantities dxi and dyi measure the distance along the x or y axis to the closest edge (either along x or y) of the
sample. Next, we define the similar measure of distance for a pair of points i and j,

dxij =
1

2

(
dxi + dxj

)
, dyij =

1

2

(
dyi + dyj

)
(7)

With this notation, we can now give the approximate form of Hcomm
ij . This form was obtained by first explicitly

solving for small N the linear system of equations given in the paper. Subsequently, we fit the obtained Hcomm
ij to a

simple function that can then be evaluated for any N . To give a fitted approximate form of Hcomm we first define,

hmin
ij = min(dxij , d

y
ij), hmax

ij = max(dxij , d
y
ij) (8)
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Now we set Hcomm
ij = 0 for all (i, j) that are not nearest neighbors. For nearest neighboring (i, j) we set

Hcomm
ij ≈ l

(
hmax
ij

Na

)
(−t) (9)

if hmin
ij /a is an integer, and

Hcomm
ij ≈ l

(
hmin
ij

Na

)
(−t) (10)

if hmin
ij /a is not an integer. The function l(z) is defined as l(z) = 3z2 − 3z + 1/2.

III. FORM OF Sij

The object Sij discussed in the main text needs to be zero in the interior and nonzero positive on the edge of the
sample. While there are many Sij that could be used to give the same qualitative result, in this work we report results
for a specific choice of Sij . First we define

Di = min(dxi , d
y
i ), Dij =

1

2
(Di +Dj) . (11)

Therefore, Di is the distance to the closest edge of the sample, regardless of whether the edge of the sample is on the
left, right, top, or bottom side. Then our Sij is

Sij =
1

N
S

(
Dij

w

)
. (12)

The function S(z) is defined as,

S(z) = 16z2(1− z)2, (13)

when 0 < z < 1 and S(z) = 0 otherwise. The function S(z) has a maximum value of 1 obtained at z = 1/2. Since
S(z) = 0 for z > 1, this guarantees that Sij = 0 whenever Dij > w. All of our calculations are done with w = 2a, so
that Sij is nonzero only in the two cells closest to the edge.

IV. EDGE CONTRIBUTION TO mdip

The total magnetic dipole of a sample at kBT = 0 we compute as mdip = e
2me

∑occ
n ⟨ψn| L̃(H) |ψn⟩. Now we wish

to get the contribution of the edge to mdip. For that purpose we define operator E(α) to project into edge orbitals
only,

E(α) =
∑

Di≤α(N
2 −1)a

|i⟩ ⟨i| . (14)

The thickness of the edge region is α
(
N
2 − 1

)
a. The parameter α is a number between 0 and 1. If α is a small positive

number, then only a few sites adjacent to the edge are included in E . If α = 1, the effective edge region is so thick
that E includes the entire sample.

If we further define Ē = 1 − E to be a projector into interior orbitals (those that are not on the edge), then by

insertion of unity we have mdip = e
2me

∑occ
n ⟨ψn| (E + Ē)L̃(H)(E + Ē) |ψn⟩. Expanding the product we get

mdip =
e

2me

occ∑

n

[
⟨ψn| EL̃(H)E |ψn⟩+ ⟨ψn| ĒL̃(H)E |ψn⟩+ ⟨ψn| EL̃(H)Ē |ψn⟩+ ⟨ψn| ĒL̃(H)Ē |ψn⟩

]
. (15)

We find numerically that the cross-terms (second and third term above) are small in comparison to the first term for
most α. We can then use the first term,

mdip(α) =
e

2me

occ∑

n

⟨ψn| E(α)L̃(H)E(α) |ψn⟩ , (16)

as a measure of contribution of the edge to the magnetic dipole mdip.



3

V. CONSISTENCY CHECKS

Along with this supplement, we provide numerical values of Hij for various N along with a computer script that
finds eigenvectors and computes the magnetic dipole moment. In addition, the same computer script performs the
following consistency checks on Hij .

1. The number of occupied electrons, divided by N2, is a constant as N → ∞. Therefore, the order N2 changes
in the magnetic dipole are not due to variations in the number of occupied electronic states.

2. The only terms with an imaginary part of Hij are near the edge of the sample. In other words, time-reversal
breaking edge contributions are really only on the edge.

3. If we set imaginary terms of Hij to zero, the magnetic dipole moment is also zero. Therefore, time-reversal
breaking on the edge is inducing magnetic dipole.

4. The largest absolute value of the real part of Hij tends to a constant as N → ∞.

5. The largest absolute value of the imaginary part of Hij tends to a constant as N → ∞.

6. Hij is zero for all pairs (i, j) that are not nearest neighbors. Therefore, H is a local operator.



4

FIG. 1. Sketch of H = Hbulk + V edge for N = 10, 20, and 30. Small circles represent orbitals i. The black lines represent the
hopping parameters Hij . The thickness of each black line is proportional to |Hij |. The variation in the thickness of the black
lines is mainly due to Hcomm. For each square, defined with orbitals i, j, k, l with fixed handedness, we compute the complex
phase of HijHjkHklHli around the square. If the complex phase is positive, we color the square darker shade of blue, and if it
is negative, we color the square darker shade of red. Normalization of the color scale is the same in all three panels.
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FIG. 2. At EF ≈ −2.55 |t|, our model has a gap of size ∆. We find that ∆ scales as 1/N with model size (N), and therefore

∆ → 0 when N → ∞, as expected for a metallic system. The data on the plot fits well to ∆ ≈ 3|t|
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FIG. 5. Density of states for Hamiltonian H0 + βHcomm as a function of N . Parameter β is varied from 0 (top panel) to 1
(bottom panel). Clearly, addition of Hcomm rearranges the spectrum by opening a set of small gaps ∆ ∼ 1/N .
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is shown on the right-hand side. The gap ∆ is indicated with an arrow. Bottom panels show the magnetic dipole mdip as a
function of Fermi level EF and N . Red and blue regions indicate positive and negative mdip.
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FIG. 7. Same as Fig. 6 but now the Hamiltonian is H0 + V edge, without the commutator correction term Hcomm. Clearly, the
density of states now no longer have a clearly defined gap, but we still find spikes in density of states.
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FIG. 8. Quantity mdip(α) measures contribution of edge to mdip. Thickness of the edge region is parameterized with α, as
defined in the text of the supplement. About half of the mdip is recovered when α ≈ 0.3, regardless of N .
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FIG. 9. Sketch of the model using the construction for the electrical dipole V ′edge in analogy to our construction for the
magnetic dipole. Small circles represent orbitals. The black lines represent the hopping parameters. Here, in the case of the
electrical dipole, all hopping parameters have the same magnitude. The edge perturbation for the dipole moment introduces a
constant (independent of N) change of the onsite energy at the left and right edge. The different sign of change in the onsite
energy on the left versus right edge is indicated with green and purple color.
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