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Parametric dependence of hot electron relaxation
timescales on electron-electron and electron-
phonon interaction strengths
Richard B. Wilson1,2✉ & Sinisa Coh1,2✉

Understanding how photoexcited electron dynamics depend on electron-electron (e-e) and

electron-phonon (e-p) interaction strengths is important for many fields, e.g. ultrafast

magnetism, photocatalysis, plasmonics, and others. Here, we report simple expressions that

capture the interplay of e-e and e-p interactions on electron distribution relaxation times. We

observe a dependence of the dynamics on e-e and e-p interaction strengths that is universal

to most metals and is also counterintuitive. While only e-p interactions reduce the total

energy stored by excited electrons, the time for energy to leave the electronic subsystem also

depends on e-e interaction strengths because e-e interactions increase the number of

electrons emitting phonons. The effect of e-e interactions on energy-relaxation is largest in

metals with strong e-p interactions. Finally, the time high energy electron states remain

occupied depends only on the strength of e-e interactions, even if e-p scattering rates are

much greater than e-e scattering rates.
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Absorption of light by a metal generates a nonthermal
distribution of electrons and holes1–3. In the femtose-
conds to picoseconds following absorption, a complex

cascade process emerges from individual electron–electron (e–e)
and electron–phonon (e–p) scattering events4–6. This cascade
process drives the system into a new equilibrium state.

We characterize the emergent nonequilibrium electron cascade
process with two time-scales, τH and τE. Time τH measures how
long the metal contains highly excited electrons with energy
comparable to that of the incoming photons, hv. Somewhat
arbitrarily, we define τH as the time for the number of highly
excited electrons with energy greater than or equal to hv/2 to
drop by a factor of 1/e, see Fig. 1. Another emergent time scale
shown in Fig. 1 is τE. Time τE is the time required for the total
energy stored by all nonequilibrium electrons to drop by a
factor of 1/e.

Time-scales τE and τH are critical, and distinct, figures of merit
for a variety of scientific and engineering endeavors, such as
photocatalysis, ultrafast magnetism, and others. Ultrafast mag-
netic phenomena are commonly driven by τE because they
depend on how quickly spatial gradients in internal energy are
relaxed7–13. On time-scales shorter than τE, nonequilibrium
electrons transport energy at rates that are 1–2 orders of mag-
nitude faster than is possible after electrons and phonons ther-
malize7,11,14–16. On the other hand, several recent studies suggest
photocatalytic performance of plasmonic metal nanoparticles is
governed by τH17–20. High energy electrons are hypothesized to
drive chemical reactions17–20. However, this hypothesis remains
controversial because it is difficult to differentiate the effect of

temperature rises from the effect of high energy nonequilibrium
electrons21,22.

The fundamental importance of electron dynamics has motivated
extensive theoretical4,9,15,17,18,23–28 and experimental2,5,6,29–38

study of relaxation times like τE and τH. These prior studies provide
descriptions of how nonequilibrium electron distributions in spe-
cific materials like Au, Al, and Cu evolve as a function of
time5,23,24,29–31,39. Early work by Tas and Maris5 and Groeneveld
et al.29 found the e–e scattering increases the rate of energy transfer
to the lattice by increasing the number of excitations. Time-resolved
two-photon photoemission studies have found e–e interactions
cause high energy electrons to decay on time-scales of tens of
femtoseconds after photoexcitation32. Mueller and Rethfeld pro-
vided a detailed analysis of how various aspects of the collision
integrals and rate-equations effect nonequilibrium electron
dynamics in Au, Al, and Ni24. Other studies have integrated first-
principles calculations of band-structure40, photon absorp-
tion17,18,41, and e–p interactions17,18 into models for none-
quilibrium electron dynamics to improve agreement with
experiment. Recent work by the plasmonics community has focused
on understanding how hot electrons effect photocatalytic effi-
ciencies in plasmonic systems3,21,22,42–46.

Surprisingly, no systematic study of how τE and τH depends on
e–e vs. e–p interactions exists. As a result, significant confusion
persists regarding the best method for estimating τE and τH from
material properties such as quasiparticle lifetimes. Estimates in
the literature for the energy relaxation time τE of various metals26

almost always underestimate the importance of e–e interac-
tions5,23,24,29,31,39. By far the most common method for esti-
mating τE of a metal is the two-temperature model26,28,47. The
two-temperature model neglects nonthermal effects, and there-
fore neglects the important role of e–e interactions. Alternatively,
the relaxation time of high energy electrons τH is often incorrectly
estimated from a simplified Boltzmann rate equation with a
Matthiessen’s-like rule44,48–50, resulting in τ�1

H � τ�1
ee þ τ�1

ep .
Here τep is the electron–phonon quasiparticle scattering time,
and τee is the electron-electron quasi-particle scattering time. This
treatment leads to the incorrect conclusion that, since e–p scat-
tering rates are stronger than e–e scattering rates, τH depends on
the strength of e–p interactions. In other-words, the Matthiessen’s
rule estimate for the relaxation times of a nonequilibrium electron
distribution will dramatically overestimate the importance of e–p
interactions.

Here, we present the calculations of the dynamics of photo-
excited electrons to quantify how τE and τH depend on
electron–electron (e–e) and electron–phonon (e–p) interaction
strengths. In contrast to the two-temperature model prediction of
τE ¼ γ�1

ep , we find nonthermal effects result in
τE � 2:5γ�0:75

ep β�0:25
ee . Here γep and βee are measures of e–p and

e–e interaction strength. γep is the two-temperature model pre-
diction for the energy relaxation rate28. βee is the
electron–electron relaxation rate for an electron/hole 0.5 eV
above/below the Fermi level. We find that the energy relaxation
time τE remains sensitive to e–e scattering unless τE is at least two
orders of magnitude larger than τH. Alternatively, we find the
dependence of τH on e–e versus e–p interactions is quite different
than for τE. We find that in most cases, due to differences in the
nature of e–e vs. e–p interactions, the time-scale for high energy
electrons to relax, τH, will depend primarily on e–e interactions.
For photoexcitation with hv ≥ 2 eV, τH depends only on e–e
quasiparticle lifetimes. This is true even if e–p quasiparticle life-
times, τep, are hundreds of times shorter than e–e quasiparticle
lifetimes, τee. In order for τH to be sensitive to e–p scattering rates,
hv needs to be in the near-infrared, e.g., ~1 eV, and γep/βee must
be larger than 0.5. γep/βee is larger than 0.5 for metals with light

Fig. 1 Definitions of distribution relaxation time-scales τH and τE. We
define time-scales τH and τE to characterize two distinct effects of
quasiparticle interactions on nonequilibrium electron dynamics. τH
measures how quickly electron–electron and electron–phonon interactions
redistribute energy from high to low energy electronic states. τE measures
how quickly electron–electron and electron–phonon interactions cause
energy transfer from the electronic subsystem to the lattice. a After
excitation with energy hv, the occupation states where |ε| ≥ hv/2 decays
with time τH. Here, we show τH for Au. b The energy absorbed by the
electrons remains in the electronic subsystem for time τE. In Au, τE is 35
times greater than τH.
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elements, e.g., Al, Cu, Li, and Mo. Our findings for τH agree with
prior studies on nonequilibrium electron dynamics that found the
lifetime of photoexcited electrons depends only on e–e quasi-
particle lifetimes1,23,32.

Results
Equation of motion for nonequilibrium electron dynamics. To
accurately capture the interplaying effects of electron–electron
and electron–phonon scattering on the dynamics, we solve the
equation of motion for the electron distribution function in a
simple metal,

df ε; tð Þ
dt

¼ Γee f ε; tð Þð Þ þ Γep f ε; tð Þð Þ: ð1Þ
Here ε is electron’s energy relative the Fermi-level, Γee is the e–e

collision integral27, and Γep is the e–p collision integral28.
Equation (1) accounts for both increases and decreases in f(ε, t)
due to scattering events. As a result, the dynamics predicted by
Eq. (1) are different from the simple exponential functions
arrived at by applying the relaxation-time-approximation. Since
we are interested in the time-evolution of the nonequilibrium
electrons, we linearize Eq. (1) by defining the nonequilibrium
distribution as ϕ ε; tð Þ ¼ f ε; tð Þ � f0ðε;TpÞ. Here f0 is the thermal
Fermi–Dirac distribution and Tp is the temperature of the lattice.
Our use of the phrase nonequilibrium electrons, or hot electrons,
refers to the electrons and holes described by ϕ(ε, t).

The two-temperature model is a special limit of Eq. (1). The
two-temperature model assumes f(ε, t) is described by
Fermi–Dirac statistics with an electron temperature Te distinct
from Tp. For this special limit28, Eq. (1) reduces to a simple heat-
equation,

Ce
∂Te

∂t
¼ gep Tp � Te

h i
: ð2Þ

Here Ce is the electron heat-capacities and
gep ¼ π�hkBDFð Þλ ω2h i. DF is the density of states at the Fermi
level, and λ〈ω2〉 is the 2nd frequency moment of the e–p spectral
function28. λ〈ω2〉 is a measure of the strength of e–p interactions
at the Fermi-level (see “Methods” section and Supplementary
Notes 1, 2). The dynamics of Tp are typically described with a 2nd
heat-equation for the phonon subsystem (not shown here). The
two-temperature model predicts an energy relaxation rate of
γep ¼ gepðC�1

p þ C�1
e Þ51. At room temperature, where Cp >>Ce,

this simplifies to γep � gep=Ce. The two-temperature model
energy relaxation rate depends only on the strength of e–p
interactions in the metal, γep � 3�hλ ω2h i= πkBTð Þ28.

Dynamics depend on quasiparticle interaction strengths. To
quantify the parametric dependence of τE and τH on the strength
of both e–e and e–p interactions, we need descriptors of the e–e
and e–p interaction strengths. Somewhat arbitrarily, we choose
γep and βee as descriptors of the e–e and e–p interaction strength.
γ�1
ep is the τE predicted by the two-temperature model28, while β�1

ee

is the e–e relaxation time for 0.5 eV excitations,
βee ¼ τ�1

ee ε ¼ 0:5 eVð Þ. There are a variety of other physical
properties that would serve equally well as descriptors. We dis-
cuss descriptor choice in more detail in “Methods” section. In
Table 1, we report literature values for γep and βee for various
metals.

We summarize the dynamics predicted by Eq. (1) in Fig. 2.
Figure 2a shows the total number of nonequilibrium electrons vs.
time for different ratios of e–p to e–e interaction strength γep/βee.
Figure 2b shows how the energy distribution of nonequilibrium
electrons evolves with time. For realistic values of e–e interaction
and e–p interaction strengths, e.g., γep=βee � 0:25, e–e scattering

increases the number of nonequilibrium electrons by about a
factor of 5 on a τE time-scale. Alternatively, for infintely strong
e-e interactions, γee/βee → 0, the energy stored in the initial
nonthermal distribution instantly redistributes into a thermal
distribution and Eq. (2) governs the dynamics. A thermalized
electron distribution has ~16× as many exictations as are initially
photo-excited. In contrast to the the energy distribution shown in
Fig. 2b, approximately 90% of excitations in a thermal
distribution are within ~100 meV of the Fermi-level. The
difference between these two cases of realistic vs. infintiely strong
e–e interactions is sometimes discussed in terms of a maximum
equivalent effect temprature ΔTme

e . ΔTme
e is defined as the

temperature increase of a thermalized electron gas for the same
injected energy31,40,45.

In Supplementary Figs. 1–3, we show dynamics for Pt, Au, and
Al. Specifically, we show the time-evolution of the occupation vs.
energy, ϕ(ε), and energy-distribution vs. energy, εϕ(ε). The metals
Pt, Au, and Al were chosen to illustrate dynamics for metals with
small, typical, and large values of γep/βee in Table 1, respectively.
In Supplementary Movies 1 and 2, we show the time-evolution of
ϕ(ε) for Au as a function of time passing on a linear and
logarithmic rate, respectively.

Our results for ϕ(ε, t) yield dynamics like those reported in
many prior studies that solved Eq. (1) without using the
relaxation-time-approximation5,6,18,24,29,31,39. Prior studies of
nonequilibrium dynamics that solve the collision integrals in
Eq. (1) have focused on specific material systems, e.g., Al, Au, Cu,
and Ag18,24,29,31,39. New to our study is explicit consideration of
how dynamics evolve across a wide range of e–e and e–p
scattering strengths. Our predictions for the dynamics of ϕ(ε)
differ significantly from prior studies that incorrectly approx-
imate Eq. (1) with a relaxation-time approximation1,2,35,44,50.
Models that use relaxation-time type approximations will predict
τH values that are too short, because they assume e–p interactions
effect τH. Furthermore, many relaxation-time models, like the
modified two temperature model52, assume the time-scale for a
nonequilibrium electron distribution to thermalize is approxi-
mately equal to τH. We find the time-scale for thermalization is
comparable to τE.

Dependence of τH and τE on quasiparticle interaction
strengths. From ϕ(ε, t) predicted by Eq. (1), we determine
relaxation times τH and τE as a function of e–p and e–e inter-
action strengths. Figure 3 shows how τH (time for high energy
electrons to decay into lower energy electrons) and τE (time for
energy of the nonequilibrium electrons to be transferred to the
lattice) depend on γep/βee. Figure 3 is the primary result of our
study. We observe that τH and τE possess a universal dependence
on the ratio of e–p to e–e scattering strengths. We find that in
nearly all metals, γep/βee is such that τH depends only on e–e,
while τE is determined by both e–e and e–p. To illustrate this
universal dependence, we report τE normalized by γ�1

ep , and τH
normalized by β�1

ee . The slope of τEγep vs. γep/βee is determined by
the sensitivity of τE to e–e interactions. A slope of zero indicates
that energy exchange between electrons and phonons is not
affected by the strength of e–e interactions. Similarly, the slope of
τHβee vs. γep/βee is determined by the sensitivity of τH to e–p
interactions. A slope of zero indicates the time for high energy
electrons to decay into lower energy electrons is determined only
by e–e interactions.

Discussion
We now discuss the origins for the dependence of τE and τH
on βee and γep. For most metals, high energy electrons decay
with τH � Cβ�1

ee , where C � 0:8 eV2= hvð Þ2 with our model

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00442-x ARTICLE

COMMUNICATIONS PHYSICS | (2020)3:179 | https://doi.org/10.1038/s42005-020-00442-x | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


assumptions. In general, C will depend on ϕ ε; t ¼ 0ð Þ and the
energy dependence of the e–e scattering times. τH depends solely
on the e–e interaction strength for two reasons.

First, e–e scattering causes much larger changes in the average
energy per excitation than e–p interactions. For an electron at
energy ε= hv, the most probable amount of energy exchanged in
an e–e interaction is hv25. Alternatively, an e–p interaction will,
on average, change the electron’s energy by ħ〈ω〉. Here, ħ〈ω〉 is
the average phonon energy of the metal and is typically 50–100×
smaller than the photon energy hv. The second reason e–e
interactions dominate τH is related to the number of in vs. out
scattering events for high energy excitations. Nearly all e–e
scattering events relax high energy excitations, but only a fraction
of e–p scattering events do the same. There are three types of e–p
interactions in the e–p collision integral: spontaneous phonon
emission, stimulated phonon emission, and phonon absorption.
Phonon absorption and stimulated emission rates are nearly
equal. Phonon absorption increases an electron’s energy, while
stimulated phonon emission decreases it. As a result, the most
important e–p interaction for ϕ ε; tð Þ is spontaneous phonon
emission. The net effect of all e–p interactions on dynamics is a
decrease in energy per electron at a rate of π2kBTγep=3. If all e–p
interactions reduced electron energies, the energy per electron
would decrease at a faster rate of �h ωh iτ�1

ep .
While e–p interactions won’t influence τH in metals, they will

affect the momentum distribution of nonequilibrium electrons.
For some phenomena, e.g., energy transport or photocatalysis, the
momentum distribution of nonequilibrium electrons is also
important.

The relationship we observe in Fig. 3b of τH � Cβ�1
ee breaks

down in the limit of very strong e–p interactions, e.g.,
γep=βee >> 1, and/or for photon energies less than 1 eV. (Sup-
plementary Note 3 provides a phenomonlogical expression for τH
that works across a wider range of γep/βee values.) The reason the
relationship breaks down for low energy excitation, e.g. hv < 1 eV,
is that a significant percentage of initially excited carriers are
within a few hundred meV of the Fermi-level. E–p interactions
dominate dynamics near the Fermi-level. In the limit hv > 1 eV
and γep=βee >> 1, the product of τH and βee is not constant,

Table 1 Literature values for the electron–electron and electron–phonon interaction strengths, βee and γep, of various metals.

Metal λ〈ω2〉 (meV2/ħ2) ΘD (K) τep (fs) γ�1
ep (fs) β�1

ee (fs) τE (fs) τH(fs)

Li 160 340 12 110 55 230 11
Na 13 158 29 1400 34 1600 7
K 3.4 91 37 5200 20 5500 4
Rb 1.8 56 27 9900 17 1.0 × 104 3
Cs 0.85 38 25 2.1 × 104 14 2.1 × 104 3
Ta 190 240 4.6 93 17 150
Mo 240 450 13 74 57 170
Fe 280 470 12 63 7.5 92
Rh 350 480 10 51 12 89
Ni 230 450 13 77 14 120
Pd 130 270 8.6 140 8 170
Pt 140 240 6.1 100 8 160
Cu 57 340 31 310 160 650 30
Ag 23 230 34 790 300 1500 60
Au 15 170 27 1200 300 2100 60
Al 270 430 10 67 40 150 8
Gd 90 200 7 200 28 290
Tb 90 200 7 200 18 270

We use the electron-electron and electron interaction strengths to calculate τH, the time-scale high energy electronic states remain occupied for, and τE, the time-scale for energy transfer between the
electronic subsystem and lattice. The values for the second frequency moment of the Eliashberg function λ〈ω2〉 and Debye temperature ΘD are from Allen59, Kittel61, and Papaconstantopoulos et al.62. To
highlight the large discrepancy between electron–phonon quasiparticle scattering time τep and time-scales τH and τE, we show τep � �h= 2πλkBT

� �
for each metal. However, we emphasize that τep is not an

input into our model. The values for β�1
ee for the alkali metals are predictions from Fermi-liquid theory for a homogenous electron gas32. The values for β�1

ee of other metals are from two photon
photoemission data32, except for Pt. We assume β�1

ee for Pt is equal to β�1
ee for Pd.

Fig. 2 Dynamics of nonequilibrium electrons after photoexcitation with
hv= 2 eV. a The total number of nonequilibrium electrons versus time for
three different values of electron–electron (e–e) scattering strengths,
γep=βee � 0:25 (realistic e–e), 0.05 (strong e–e), and 0 (infinite e–e). For
the case of infinitely strong electron–electron scattering, the initial
distribution evolves instantaneously into a thermal distribution, which
increases the number of hot electrons by a factor of ~16. The inset
illustrates the cascade dynamics of nonequilibrium electrons, e, and
nonequilibrium holes, h. b The energy distribution of excitations for the
case of γep=βee � 0:25. Each band represents the number of excitations in
a specific energy range, e.g., the number of excitations with energy greater
than 50% of hv for the top most dark green band. τH is the time-scale that
high energy electronic states remain occupied. τE is the time-scale for
energy transfer between the electronic subsystem and lattice.
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meaning τH depends on both e–e and e–p interaction strength.
However, for metals where literature data is available for both γep
and βee, we could find no examples where γep=βee >> 1. Metallic
compounds with exceptionally strong e–p interactions, such as
Be, VN and MgB2 with λ ω2h i � 2000meV2, do not have data
available for e–e lifetimes. If these metals possessed weak e–e
interaction strengths, e.g., β�1

ee > 50 fs, then τH would be sensitive
to the e–p interaction strength.

In contrast to τH, τE is sensitive to both e–e and e–p scattering
so long as γep=βee > 0:05. While it is obvious the time-scale for
energy transfer from electrons to phonons should depend on e–p
scattering strength, the importance of e–e scattering is less
straightforward. Unlike e–p scattering, e–e interactions do not
change the total energy in the electronic subsystem. Instead, e–e
interactions alter how energy is distribtued across the electronic
subsystem. Electron–electron scattering events turn a single
excited electron into three excited electrons. Three electrons will
transfer energy to the phonons roughly three times as fast as one
electron because they will spontaneously emit phonons three
times as often. As a result, both e–e and e–p interactions deter-
mine τE if electronic interactions don’t rapidly thermalize the
electronic subsystem. The importance of cascade dynamics on
energy-transfer rates was originally reported by Tas and Maris5,
as well as others later23,29,31,39.

The energy relaxation times in Fig. 3 are well approximated as
τE � 2:5 � β�0:25

ee γ�0:75
ep provided 0:05< γep=βee < 2. Alternatively,

τE � γ�1
ep þ 1:8γ�1

ep ½1� tanhð�0:35 ln½0:6γep=βee�Þ� is a good
approximation for all γep=βee < 2. A survey of literature values for

e–e and e–p interaction strength suggest most metals fall in the
range of 0:05< γep=βee < 2, see Table 1. For these metals, the two-
temperature model estimate of τE is off by a factor ranging from
1.3 to 3, depending on the ratio γep/βee.

Nonthermal effects are most important in metals with light
elements and simple electronic structures where γep/βee is largest,
e.g., Al. γep is highest in metals with light elements, because small
ion mass leads to higher phonon frequencies and stronger
electron–phonon coupling. βee is smallest in metals where phase-
space for e–e scattering is limited, e.g., the noble metals. βee is
largest in transition metals where the Fermi-level lies in the d-
bands. Partial occupation of d-bands increases the phase-space
for e–e scattering processes by allowing interband transitions. All
other factors being equal, βee will be higher in metals with higher
charge densities. Screening effects are also important. βee is
smaller in metals where screening is large (higher permittivity in
the static limit.) For example, βee is smaller in Au than Ag due to
d-band screening.

In the limit of strong e–e scattering, γep=βee < 0:05, the energy
relaxation time converges to the two-temperature model predic-
tion, τE � γ�1

ep . In this limit, the relaxation of the nonequilibrium
electron distribution occurs in a two-step process. The first step is
e–e scattering drives electrons into a distribution that is nearly
thermal, i.e., a distribution that maximizes entropy in the elec-
tronic subsystem. At this stage, the electrons remain out-of-
equilibrium with the phonons, i.e., Te ≠Tp. The second step is the
nonequilibrium electrons transfer energy to the lattice on a γ�1

ep
time-scale. The alkali metals Na, K, Rb, and Cs have sufficiently
weak e–p interactions for the two-temperature model to be valid.
Pd and Pt are also close to meeting the γep=βee < 0:05 criteria due
to strong e–e interactions.

While the two-temperature model will lack predictive power in
most systems made up of only one metal, γep=βee < 0:05 is easier
to satisfy in bilayer systems composed of different types of metals.
In a bilayer, if one metal has strong e–e interactions, while the
other has weak e–p interactions, e.g., Pt with Au14,38, then pho-
toexcited electrons in these systems will relax via a two-step
process similar to the one described above for two-temperature
behavior14,16. First, nonequilibrium electrons will thermalize in
the layer with strong e–e scattering. Second, a now thermalized
distribution of nonequilibrium electrons will exchange energy
with phonons in the metal layer with weak e–p interactions.
Several recent experimental studies have observed two-step
dynamics in metal bilayer systems14,16,38.

Now we compare our model predictions for τE of Au, Al, and
Pt with experiment. While a variety of experimental studies are
sensitive to the cooling rates of photoexcited electrons47, inter-
pretation of such experiments is not straightforward18,37,53.
Time-resolved measurements of changes in optical properties,
e.g., time–domain thermoreflectance or time–domain transient
absorption, are common methods for studying nonequilibrium
electron dynamics1,26,33,36,47,54. Optical properties depend on the
excited electron distribution in a complex way and deducing τE
from decay-rates of thermoreflectance or transient absorption
signals is not trivial18. Two recent experimental studies on
nonequilibrium electron dynamics in Au account for this com-
plexity by modeling of how the nonequilibrium electron dis-
tribution correlates to changes in the dielectric function of Au.
Both studies conclude nonequilibrium electrons transfer energy
to phonons on a 2–3 ps time-scale, in fair agreement with our
model’s prediction for Au of τE ≈ 2 ps. Our model predictions for
τE � 0:15 ps in Al and τE � 0:16 ps in Pt are shorter than
experimental values extracted from measurements of none-
quilibrium heat transfer in metals. Tas and Maris report τE �
0:23 ps in Al5, while Jang et al. report τE � 0:2 ps for Pt55.

Fig. 3 Dependence of τH and τE on electron-electron and electron-phonon
interaction strengths, βee and γep. To illustrate the universal dependence of
τE and τH on the ratio of interaction strengths γep/βee, we report τE and τH
normalized by the time-scales γ�1

ep and β�1
ee , respectively. τH is the time-scale

that high energy electronic states remain occupied. τE is the time-scale for
energy transfer between the electronic subsystem and lattice. hv is the
energy of absorbed photons. Values of γep/βee for various metals are
indicated with vertical arrows. a For realistic values of e–e vs. e–p
interaction strengths, τE depends on both γep and βee. In the limit of
γep=βee <0:05, τE converges to the two-temperature value and is
independent of βee. b For photoexcitation with visible light (2 and 3 eV) and
realistic values of e–e versus e–p interaction strengths, τH depends only on
e–e interaction strengths.
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The reasonable agreement between our prediction of τE �
0:16 ps for Pt and the Jang et al. experimental value of τE � 0:2 ps
is likely coincidental because there could be error in the value of
γep we use for Pt. The values of γep in Table 1 for all metals were
determined in a crude manner based on Debye temperatures and
an analysis of experimental electrical resistivity data56. Such an
approach is likely to have significant error for a metal like Pt,
where the electronic density of states is a strong function of
energy near the Fermi-level55.

The discrepancy between the experimental value for Al of τE �
0:23 ps and our prediction of τE � 0:15 ps is surprising. Al is often
viewed as a nearly free electron metal. Our model assumptions
should be most reasonable for free electron like metals. The dis-
crepancy may be due to our estimate of βee. For Al we set β

�1
ee to

40 fs for Al based on time-resolved two-photon photoemission
data32. However, deducing the average e–e scattering rate vs.
electron energy from experimental photoemission data is non-
trivial. It requires evaluating the effect of a variety of factors on the
on the two photon photoemission data. These factors include hot
electron transport, surface scattering, e–p interactions, and the
wave-vector dependence of e–e scattering rates32. For many
metals, predictions for β�1

ee from the GW approximation25 agree
with photoemission data, e.g., Au (220 vs. 300 fs) and Cu (200 vs.
160 fs). But this is not the case for Al, where GW predicts a
electron-momentum averaged value for β�1

ee that is ~6× larger
than the one deduced from two-photon photoemission measure-
ments25. Nechaev et al. have suggested the disagreement is because
the two-photon data is a measure of both e–e and e–p interactions
in Al57. However, Nechaev et al. analysis does not solve an
equation of motion for hot electrons like Eq. (1) to include the
effect of e–p interactions on the distribution. Instead, Nechaev
et al.‘s analysis relies on Matthiesen’s rule to add e–e and e–p
quasiparticle scattering rates, which is not valid. Schone et al. have
suggested that two-photon photoemission experiments are pri-
marily a measure of the lifetime of electrons near the W-point of
k-space58. Light absorption primarily populates states near the W-
point of k-space due to momentum conservation. Near the W-
point, the band-structure of Al deviates markedly from a free-
electron system58. As a result, the e–e quasiparticle lifetime of
electronic states near the W-point are much shorter than the
average value across the Brillouin zone58. Since the time-scale for
energy relaxation is much greater than the time-scale for e–e and
e–p quasiparticle scattering, τE will depend on e–e scattering rate
of states across the entire Brillouin zone, and not just e–e scat-
tering rates of states near the W-point. If, instead of using two-
photon data, we use the electron-momentum averaged GW pre-
diction from Ladstädter et al.25 to set β�1

ee � 260 fs for Al, our
model predicts τE � 0:22 ps. This latter value is in good agree-
ment with the experimental results of Tas and Maris5.

While the present study considers the regime of low laser
fluence, we expect that at larger fluence the type of dynamics, and
relaxation times, will be different. At higher fluence, the dynamics
will be closer to the two-step process described by the two-
temperature model. This change in dynamics occurs because a
higher laser fluence requires fewer e-e scattering events to relax
photoexcited electrons to a Fermi–Dirac thermal distribution. To
understand why, consider an absorbed fluence of 10 mJ m−2 in a
10 nm thick Au film. This energy density spread across a thermal
distribution of electrons corresponds to 60 meV per excited
electron, much less than eV scale energies of photoexcited elec-
trons. Alternatively, an absorbed fluence of 10 J m−2 spread
across a thermal distribution of electrons corresponds to ~0.5 eV
per excited electron, which is comparable to the energy of pho-
toexcited electrons. Therefore, a distribution excited by a high
fluence laser pulse requires fewer e–e scattering events to evolve
into a Fermi–Dirac distribution.

Our calculations in Figs. 1–3 were carried out at 300 K, but the
results are similar at other temperatures. The rate of energy
relaxation will increase at lower temperatures because of
decreases in electronic heat capacity, i.e., changes in f0 ε;Tð Þ.
Changes to e–p scattering rates due to changes in ambient tem-
perature are relatively unimportant. This is because the rate of
energy transfer from nonequilibrium electrons to phonons
depends primarily on spontaneous phonon emission, which is
temperature independent. The effect of temperature is included in
our approximate expression for τE via the γep term.

In conclusion, we have numerically solved the Boltzmann rate
equation to quantify how cascade dynamics of photoexcited
electrons depend on e–e and e–p interactions. For most simple
metals, the rate of energy transfer is sensitive to both e–e scat-
tering and e–p scattering due to cascade dynamics. We find
nonthermal effects are most important in metals with light ele-
ments and simple electronic structures, e.g., Al and Li. The energy
relaxation time of the nonequilibrium electron distribution is well
approximated as τE � 2:5 � β�0:25

ee γ�0:75
ep , where γep is the electron-

phonon energy relaxation rate predicted for a thermal electron
distribution, and βee is e–e scattering rate of an electron or hole
0.5 eV away from the Fermi level. In the limit that γep=βee$ 0:05,
the two-temperature model is accurate because e–e scattering is
effective at establishing a near thermal distribution of electrons
before significant energy is transferred to the lattice. We can
identify only a few metals that satisfy the criterion γep=βee<0:05:
Na, K, Rb, and Cs. These findings are important for under-
standing ultrafast electron dynamics in a diverse range of fields,
e.g., ultrafast magnetism, photocatalysis, plasmonics, and others.

Methods
Collision integrals. To solve Eq. (1) we need analytic expressions for the collision
integrals. Using a Taylor series expansion, we approximate the electron-phonon
collision integral as

Γep ϕ ε; tð Þð Þ ¼ π�hλ ω2
� � �2

df0 εð Þ
dε

ϕ εð Þ þ 1� 2f0 εð Þ½ � ∂ϕ εð Þ
∂ε

þ kBT
∂2ϕ εð Þ
∂ε2

� �
: ð3Þ

Here, λ〈ω2〉 is the second frequency moment of the Eliashberg function
α2F ωð Þω�1,

λ ω2
� � ¼ 2

Z
dωα2F ωð Þω: ð4Þ

We provide a full derivation of Eq. (3) in Supplementary Note 1. We use the
analytic solution for the electron–electron collision integral derived by Kabanov
et al.27 for Fermi liquids

dϕ
dt ¼ � ϕ εð Þ

τee εð Þ þ K

cosh ε
2kBT

� 	 R1�1dε0ϕ ε0ð Þ cosh ε0
2kBT

� 	

´ ε�ε0ð Þ
sinh ε�ε0

2kBT

� 	� εþε0ð Þ
2 sinh εþε0

2kBT

� 	
2
4

3
5 ; ð5Þ

where

τee εð Þ ¼ 2
K

1

πkBTð Þ2 þ ε2

 !
: ð6Þ

Equation (5) redistributes energy in the electronic subsystem while conserving
the total energy in the subsystem.

Evaluation of Γep in Eq. (3) requires the material’s electron–phonon spectral
function α2F ε;ωð Þ23,24,27,29,31 to evaluate the value of λ〈ω2〉 as a function of
electron energy ε. Similarly, evaluation of Γee in Eq. (5) requires knowledge of the
Kernel function K ε; ε0; ε00; ε000ð Þ23,24,27,29,31. (This function is the Kernel of the e–e
collision integral.) The function α2F ε;ωð Þ is the average square of the
electron–phonon matrix element on a constant electron energy surface of ε with
phonons of frequency ω. The function α2F ε;ωð Þ determines average e–p
quasiparticle lifetime of electronic states on the constant energy surface ε with a
phonon of frequency ω. At the Fermi-level, α2F 0;ωð Þ governs many electronic
phenomena in metals, e.g., electrical resistivity and superconductivity59. The Kernel
function K ε; ε0; ε00; ε000ð Þ is the average square of the electron-electron matrix
element between electrons on a constant energy surface ε with electronic states on
constant energy surfaces defined by ε′, ε″, and ε″ 28. The Kernel function
determines the average e-e quasi-particle lifetime of electronic states on the
constant energy surface ε. Like the e–p spectral function, the Kernel function is
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important for a variety of electronic phenomena in metals. At the Fermi-level, the
constant K(ε= 0) is related to the Coulomb pseudopotential, which is an important
for the theory for low-temperature resistivity of transition metals60 and the theory
of superconductivity27.

To define simple descriptors for the e–e and e–p interaction strengths, we
neglect the dependence of λ〈ω2〉 and K on electron energy ε and fix e–e and e–p
interaction strengths to their values at the Fermi-level. This assumption is quite
good for simple metals like Al, Cu, Ag, Au, as well as the alkali metals. In these
metals, the electronic density of states is relatively constant within hv of the Fermi-
level, which is the energy-scale we are concerned with here. A variety of theoretical
and experimental studies provide evidence that neglecting the ε dependence is a
reasonable approximation for simple metals. First-principles calculations for Al,
Cu, and Au confirm that both λ〈ω2〉17 and K25 depend only weakly on ε. An energy
independent K leads to the well-known ε−2 dependence for electron–hole
excitations in a Fermi-liquid, and time-resolved two-photon photoemission
measurements of Al, Au, Ag, and Cu observe such an ε−2 dependence32.
Alternatively, in transition metals, the electronic density of states can vary
significantly within a few eV of the Fermi level. As a result, our assumption that λ
〈ω2〉 and K are independent of ε will cause some error in calculated values of τE and
τH for transition metals. We quantify this error in Supplementary Note 2.

Instead of using λ〈ω2〉 and K as descriptors for the e–e and e–p interaction
strengths, we prefer alternative but related parameters that correspond to
important time-scales in our problem. As a descriptor of the e–p interaction, we
choose the energy-relaxation time for a thermal distribution of nonequilibrium
electrons, γep. γep and λ〈ω2〉 are proportional to one another:
γep ¼ 3�hλ ω2h i= πkBTð Þ. The values we used for γep of various metals are reported
in Table 1. Table 1 values are based on an analysis of electrical resistivity data by
Allen59 and use the approximation λ ω2h i � λ � Θ2

D=2, where ΘD is the Debye
temperature. To describe the e–e interaction strength, we choose the scattering rate
of a 0.5 eV electronic excitation βee ¼ K 0:5 eVð Þ2=2. Values for βee in Table 1 for
nonalkali metals are based on photoemission data for electron lifetimes32. βee for
the alkali metals is based on predictions of Fermi liquid theory for a homogenous
electron gas32. We choose the scattering time for 0.5 eV electrons as our measure
for e–e interaction strength because this is the lowest energy, where experimental
two-photon emission data is commonly available. Alternative descriptor choices for
e–e interactions, e.g., the lifetime of 1 eV electrons, would yield quite similar results
(see Supplementary Note 2). Fixing the e–e interaction strength with the electron
lifetime at 0.5 eV allows Eq. (6) to make reasonably accurate predictions for
τee ε< 1 eVð Þ in transistion metals, despite our model neglecting the ε dependence
of K, see Supplementary Fig. 4. We want τee εð Þ be accurate for low energy
excitations because, as shown in Fig. 2b, nearly all nonequilibrium electrons are at
low energies on time-scales comparable to τE.

Solving Eq. (1) requires initial conditions. We assume the probability a photon
with energy hv will move an electron from a state with energy ε to a state with
energy εþ hv is proportional to f0 εð Þ 1� f0 εþ hvð Þð Þ. This assumption results in a
flat initial distribution of electrons and holes with concentration ϕ0 << 1 that
extends to an energy hv above and below the Fermi level. We consider hv between
1 and 3 eV, i.e., visible light. We focus on visible light because most experimental
studies on ultrafast electron dynamics use visible light for photoexcitation. Our
conclusions do not rely on the assumption that a flat distribution is excited. We
obtain similar results if we assume a completely different energy dependence for
the initial distribution. For example, we obtain nearly identical results for how τE
depends on e–e and e–p scattering strengths if we instead assume photons with
energy hv only excite electrons and holes at energy hv/2 above and below the
Fermi level.

In our calculations, we assume instantaneous photoexcitation so the relaxation
times of ϕ ε; tð Þ depend only on e–e and e–p interactions. The time-scales τE and τH
describe the intrinsic response times of the metal, and do not depend on pulse
duration of the photoexcitation. The effect of a finite pulse duration could be
included in several ways. A time-dependent source term could be added to Eq. (1).
Or, our solution for ϕ ε; tð Þ in response to initial conditions could be used to
construct a Green’s function solution to the problem.

Model assumptions. For completeness, we now summarize all the assumptions in
our model. Equation (1) assumes the distribution function depends only on energy
and time, thereby neglecting variation in angles of the wavevector. When solving
Eq. (1), we neglect any rise in internal energy of the lattice, i.e., we assume Tp is
constant. This assumption is reasonable because the phonon heat-capacity is large
compared to the electron heat capacity. Furthermore, allowing Tp to evolve with
time wouldn’t affect predictions for τH and τE because Tp doesn’t affect the two
most important types of scattering processes: e–e scattering rates and spontaneous
phonon emission rates. For some applications, e.g., photocatalysis, the increase in
Tp is important to track so that thermal and nonequilibrium electron phenomena
can be differentiated21,22. The effects of a dynamic phonon temperature can be

added to our model by solving the equation Cp
∂Tp

∂t ¼ � ∂Etot
∂t simultaneously with

Eq. (1), where Etot is the energy stored by the nonequilibrium electron distribution.
Another assumption we make when solving Eq. (1) is low fluence photoexcitation.
We linearize Eq. (1) by assuming ϕ ε; tð Þ ¼ f ε; tð Þ � f0 εð Þ � 1, and keeping only
terms linear in ϕ(ε, t). As noted above, we neglect the dependence of the e–p

spectral function on electron energy, and the dependence of the e–e Kernel
function on electron energy. Finally, by setting the initial distribution to ϕ(ε, t = 0)
= ϕ0 at all energies within hv of the Fermi-level, we are assuming an energy
independent joint density of states. These latter three assumptions are all related to
the energy dependence of the electronic density of states. We discuss why these
latter three assumptions are reasonable in Supplementary Note 2.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request
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