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We study the magneto-optical properties of Fe-Co-Al ordered alloys in the terahertz range of
frequencies. Using the standard Kubo-based approach to compute intrinsic part of the σxy(ω) we
find a strong dependence of σxy on ω in the terahertz range. For example, we find that below
10 THz Co3Al has nearly constant σxy and that above 10 THz it is reduced by about 50 times.
Furthermore, we find a strong dependence of σxy on the chemical composition. For example, we
find that the addition of Al to Fe changes the sign of σxy, while the addition of Co to Fe leads to a
nonmonotonic dependence of σxy on Co concentration.

I. INTRODUCTION

A magnet with a cubic crystal structure and mag-
netization pointing along the z-axis has a non-zero off-
diagonal component of the optical conductivity, σxy(ω).
This contribution to the conductivity occurs because
magnetic order in such a system breaks time-reversal
symmetry. The breaking of the time-reversal symme-
try is propagated to the electronic degrees of freedom by
the spin-orbit interaction. Therefore, the magnitude of
σxy(ω) is dictated by the spin-orbit interaction strength.1

Presence of off-diagonal conductivity σxy, and thus in-
directly the presence of magnetic order, can be detected
optically by comparing the polarization of light incident
to, and reflected from, the surface of a magnet. This oc-
curs for example in the so-called magneto-optical Kerr
effect, MOKE.2 Opposite is also true. If one changes the
magnetization direction along the z-axis,

Mz → −Mz,

this will result in,

σxy → −σxy.

Therefore, one can use the direction of magnetization to
control the way in which light reflects from a surface of
a magnet. This effect has been used in memory stor-
age devices3,4 and in the creation of tunable photonic
materials.5,6

At zero frequency, the static conductivity σxy(ω = 0)
produces the anomalous Hall effect (AHE). In materials
with very few impurities, so that the diagonal conductiv-
ity σxx is above 106 (Ω cm)−1, the dominant contribution
to AHE originates from the scattering of electrons from
the impurities. On the other hand, somewhat paradoxi-
cally, in materials with a moderate amount of impurities,
with diagonal conductivity around 104–106 (Ω cm)−1, the
dominant contribution to AHE is intrinsic, independent
of the number of impurities.1 The intrinsic contribution
to AHE is given by the integral of the Berry curvature
over the occupied states.7 However, in the dynamic case,
the σxy(ω ̸= 0) can no longer be written as a sum over the
Berry curvature, instead it needs to be computed from

the Kubo-like sum over empty states, as in Refs. 8–11.
Nevertheless, we expect that for small enough ω the in-
trinsic contribution still dominates σxy(ω), which is con-
sistent with findings in Ref. 12.

There are many calculations of static intrinsic AHC in
the literature. For example, Yao13 calculated the AHC
of ferromagnetic bcc Fe, and the calculated σxy at zero
frequency is 751 (Ω cm)−1. Wang14 found that at zero
frequency, AHC (σxy) in bcc Fe, fcc Ni, and hcp Co is
753, −2203, and 477 (Ω cm)−1, respectively. Bianco15

calculated the AHC in Fe3Co, and the σxy value at zero
frequency is 452 (Ω cm)−1. Huang16 calculated the AHC
of the Heusler compound such as Co2FeAl and found it
to be 39 (Ω cm)−1.

While σxy originates from magnetism, the proportion-
ality coefficient between σxy and the magnetic moment
is difficult to predict without performing an explicit first-
principles calculation. As discussed in early work on fre-
quency dependence of σxy from Ref. 9, as well as in later
Refs. 13–15, and 17, different parts of the reciprocal space
can have either positive or negative contribution to σxy,
as sign will in general depend on position of the Fermi
level relative to the subtle spin-orbit induced band gaps
in the band-structure. Therefore, we might expect that,
generally σxy will be a very sensitive function of the elec-
tronic band structure. As a consequence, we expect a
rich dependence of dynamic σxy(ω) in the low-frequency
range. In particular, we expect that there will be a strong
frequency dependence of σxy(ω) when ℏω is close to the
energy of the spin-orbit split bands in the band struc-
ture. The energy of the spin-orbit split bands is on the
order of tens of meV in ferromagnetic metals such as Fe,
Co, or Ni. These energies lie in the range of frequencies
∼10 THz, within the so-called terahertz-gap: the range
of frequencies in the electromagnetic spectrum that are
in between the microwave radio frequencies and optical
frequencies.

Moreover, we quite generally expect that σxy will be
very sensitive on alloying, as even subtle changes in the
electronic band structure will change the position of spin-
orbit split bands relative to the Fermi level. In this study,
we use first-principles techniques to calculate the σxy(ω)
in the THz regime for a specific ternary metallic alloy sys-
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tem, Fe-Co-Al. We decided to focus on this alloy in par-
ticular, as it is known that the addition of Co to Fe leads
to strong variations of spin-polarized density of states, as
studied, for example, in Ref. 18. Furthermore, even small
addition of Al to Fe–Co can lead to large changes in the
measured spin-dependent physical properties, as shown
in Refs. 19–21. Our calculations show that alloying is
indeed a feasible way to change the THz optical response
of ferromagnetic metals in the Fe-Co-Al ternary system.

The early work from Ref. 9 focuses on the frequency
dependence of σxy in Fe, Co, and Ni for frequencies ω
above 0.1 eV. Most other studies of frequency-dependent
σxy are carried out in the optical regime, at even higher
energies. For example, Ref. 22 computed σxy for Fe3Co
and FeCo3 in the 0.5–5.2 eV energy range. Next, Ref. 23
calculated the optical response of Fe4−xCox (with x = 1–
3) up to the 13 eV range, while Ref. 24 and 25 re-
ported σxy for FeAl in the 0.5–6 eV range. Recently,
some studies have focused on the off-diagonal optical re-
sponse in the terahertz (THz) regime. Seifert26 studied
the off-diagonal optical response in DyCo5, Co0.32Fe0.68
and Gd0.27Fe0.73, and they measured somewhat stronger
dependence of σxy on ω in the range of frequencies be-
low 10 THz, than above 10 THz. Matsuda12 studied
the off-diagonal optical response in Weyl antiferromag-

net Mn3Sn at very low energy (10 meV) and they find
weak dependence of σxy on frequency. On the other hand,
calculated and measured σxy in the THz regime is very
frequency dependent in SrRuO3, as shown in Refs. 27–29.

We organize the paper as follows. In Sec. II we show
the calculation methods. In Sec. III we present and ana-
lyze our results. We conclude in Sec. IV.

II. METHODS

We use the Quantum Espresso package30 to calcu-
late the electronic structure of ordered alloys of Fe,
Co, and Al. We use the Generalized Gradient Ap-
proximation (GGA) of Perdew, Burke, and Ernzerhof
(PBE)31 along with the optimized norm-conserving Van-
derbilt (ONCV) pseudopotentials which include spin-
orbit interaction.32–34 We choose 120 Ha kinetic-energy
cutoff for the plane-wave expansion of the valence wave
functions. A 16×16×16 Monkhorst-Pack grid and a
smearing35 of 0.01 Ry are used to sample the electron’s
Brillouin zone. We computed σxy(ω) using the standard
Kubo formula,36

σαβ(ω) =
ie2ℏ
V Nk

lim
δ→0

∑
k

∑
nm

fmk − fnk
εmk − εnk

⟨ϕnk| vα |ϕmk⟩ ⟨ϕmk| vβ |ϕnk⟩
εmk − εnk − ℏω − iδ/2

(1)

that was already used successfully in Refs. 8–11. Here, α
and β denote Cartesian directions. V is the cell volume,
Nk is the number of k-points, and fnk is the Fermi-Dirac
distribution function. ω is the optical frequency. We
use the Wannier interpolation37,38 in evaluating Eq. 1,
as these calculations require a very dense sampling of the
Brillouin zone. We tested the convergence of σxy with the
choice of the k mesh. We use adaptive k-mesh refinement
to accelerate convergence13 by adding a 5×5×5 fine mesh
around regions with a large contribution to σxy(ω). For
pure metals (Fe and Co), a 250×250×250 primary k-
mesh is enough to achieve the convergence of σxy. For
calculations with two atoms per unit cell and four atoms
per unit cell, a 200×200×200 and 150×150×150 k-mesh,
respectively, was enough to achieve convergence.

In this work we mostly stay within the intrinsic limit
δ → 0 of the σxy for small ω, as given by Eq. 1. For future
work we leave the role of finite electron lifetime, random
disorder, or temperature effects on σxy(ω) in the THz
regime. As discussed in Sec. IV we attempt to approxi-
mately model disorder within the approach of Ref. 39.

To validate the reliability of our calculation approach,
we compare our calculation results with previous calcula-
tions. Our calculated σxy of Fe and Co at zero frequency
are 758 and 471 (Ω cm)−1, respectively, which agrees very

well with the previous calculation result of 753 (Ω cm)−1

in Fe and 477 (Ω cm)−1 in Co.14 Furthermore, the cal-
culated σxy of FeCo and Fe3Co at zero frequency is 226
and 416 (Ω cm)−1, respectively. The measured σxy of
Fe0.68Co0.32 at zero frequency is about 350 (Ω cm)−126,
which lies between the theoretical values of FeCo and
Fe3Co. Furthermore, we calculated the Kerr angle of Fe
in the range of 0–1.2 eV by using our calculated σxy val-
ues and experimental σxx values from Ref. 40 and 41.
Our calculated Kerr angle matches very well with the
results in Ref. 42.

In all of our calculations, we assumed that the mag-
netization points along the [001] direction. We did not
explore what happens to the off-diagonal conductivity
when the magnetization points in any other crystallo-
graphic direction, such as [011] or [111]. We decided to
restrict our calculations to those with the magnetization
axis pointing along the [001] direction, as our goal here is
to compare σxy only as a function of the chemical com-
position of the alloy and frequency. Furthermore, for
consistency, in each calculation we chose the same sign
of magnetization along the [001] direction.
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III. RESULTS AND DISCUSSION

Now we present our results for ordered Fe-Co-Al alloys.
We start by discussing the computed lattice constants
and crystal structure of these alloys. Our results are
shown in Table I. Most of the ordered alloys we studied
order in the bcc-derived structures B2 and D03.

43–45 The
B2 structure is a bcc-derived structure with two atoms in
the primitive unit cell. This structure is therefore present
in alloys with the ratio of 1–1 of two elements. On the
other hand, D03 structure contains four atoms in the
primitive unit cell, so it is present in ordered binary al-
loys with the 1–3 ratio of constituent elements, or the
1–1–2 ratio in the case of ternary alloys. Among the or-
dered alloys we studied, the only ones that are not in
the bcc-derived structure are Al, FeAl3, CoAl3, Co, and
Co3Al. However, three of these (Al, FeAl3, and CoAl3)
are nonmagnetic, regardless of their crystal structure, so
their σxy is identically zero. Therefore, we don’t discuss
these cases in more detail. Next, in the case of Co, we
explicitly showed that σxy(ω) is very similar in bcc and
hcp structures. Therefore, for a more consistent com-
parison with other members of the Fe-Co-Al family of
compounds, we will show results for pure Co in its bcc
structure. Finally, we expect that the remaining excep-
tion, Co-rich Co3Al, will also have σxy(ω) that doesn’t
strongly depend on the structure, so that we are justified
in studying Co3Al in the bcc-derived structure (and not
in the lowest energy structure, the fcc-derived L12).

We find that the computed lattice constants are close
to the values experimentally measured. Small deviations,
on the order of 1% are due to the approximations in
our exchange-correlation functional, as well as thermal
expansion, as the experimental data in Table I are taken
at room temperature.

Calculated magnetic moments per atom are also given
in Tab. I. Most of these ordered alloys are magnetic in our
calculations, with the exception of Al-rich compounds,
such as FeAl3, CoAl3 and CoAl. These findings are in
agreement with previous studies.46,47

TABLE I. Calculated magnetic moment and lattice constant
of ordered Fe-Co-Al alloys. The magnetic moment is on a per
atom basis, and this includes either nominally magnetic atom
(Fe, Co), or non-magnetic atom (Al).

M acalc aexp

(µB/atom) (Å) (Å)
Fe bcc 2.26 2.84 2.84
Fe3Co D03 2.36 5.71 5.66
FeCo B2 2.30 2.85 2.85
FeCo3 D03 2.02 5.66 5.66
Co bcc 1.80 2.82 2.82

Co hcp 1.62
a = 2.50 a = 2.50
c = 4.04 c = 4.09

Fe3Al D03 1.55 5.76 5.79
FeAl B2 0.36 2.88 2.91
FeAl3 D03 . 5.98
Co3Al D03 1.05 5.69
CoAl B2 . 2.86 2.86
CoAl3 D03 . 6.01
Fe2CoAl D03 1.54 5.76 5.73
FeCo2Al D03 1.25 5.71 5.73

A. Fe and Co

Figure 1 shows calculated σxy(ω) of pure Fe and Co
metal in the range of energies from ℏω ∼ 0–0.1 eV.
This corresponds to the range of frequencies ω/(2π) ∼ 0–
25 THz. As expected, we find a strong variation of σxy(ω)
as a function of frequency, in both Fe and Co. These
variations are the strongest around 10–15 THz. We at-
tribute these modifications to the fact that the charac-
teristic spin-orbit gaps in these metals occur in the same
range of energies. For Fe, we find that the minimal value
of σxy, in the studied frequency range, is 634 (Ω cm)−1

at 14.5 THz, while the maximal value is 1.5 times larger,
950 (Ω cm)−1 at a nearby frequency of 16 THz. In the
case of Co, the minimal value is 233 (Ω cm)−1 at 17 THz,
and maximal value is 2.5 times larger, 582 (Ω cm)−1 at
10 THz. We compared σxy(ω) in bcc and hcp structure
of Co and we found qualitatively similar responses, as
shown in Fig. 1. Therefore, at least in the case of Co,
the crystalline structure doesn’t have a strong effect on
σxy(ω).

B. Fe-Co alloys

After analyzing σxy in pure Fe and Co, we now turn to
the ordered Fe-Co alloys. We considered three ordered
alloys of Fe and Co, these are Fe3Co, FeCo, and FeCo3.
The ordered crystalline structures of these alloys are bcc-
derived D03, B2 and D03, respectively. Our results for
Fe-Co alloys are shown in Fig. 2. Starting from pure
Fe, we find that the addition of Co at first significantly
reduces the value of σxy. In particular, σxy in Fe3Co
is on average about 2 times lower than that of pure Fe.
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FIG. 1. Calculated real part of σxy for bcc Fe, bcc Co, and
hcp Co as a function of ω.
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FIG. 2. Calculated real part of σxy for bcc Fe, D03 Fe3Co,
B2 FeCo, D03 FeCo3 and bcc Co as a function of ω.

Furthermore, the spectral features of alloy Fe3Co are dis-
tinct from that of pure Fe. While both Fe and Co have
a nearly constant σxy up to 10 THz, we find that Fe3Co
shows a strong dependence on frequency starting already
around 3 THz. This finding of a large sensitivity of σxy

to the chemical composition is in agreement with our ex-
pectation that σxy is very sensitive to details of the band
structure. Adding even more Co, as in FeCo, we find that
the value of σxy is reduced even further. In particular,
σxy is about 4 times smaller in FeCo than in pure Fe.
Moreover, the spectral features of FeCo are surprisingly
constant in the entire range of frequencies we studied.
The further addition of Co increases the value of σxy.
For example, in the case of FeCo3, σxy is similar in mag-
nitude to that of pure Co. The spectral features of FeCo3
are the strongest among the Fe-Co alloys we studied.

The nonmonotonic dependence of σxy on Co concen-
tration is reminiscent of a nonmonotonic dependence of
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FIG. 3. Calculated real part of σxy for bcc Fe, D03 Fe3Al,
B2 Fe0.50Al0.50 and bcc Al as a function of ω.

magnetic damping observed in Fe-Co alloys.18 Although
magnetic damping is not directly related to σxy, we ex-
pect that both can be related to changes in the nature
of the electronic band structure near the Fermi level in
Fe-Co alloys.
We note that variation in σxy on Co concentration

can’t be rationalized with variation of the magnetic mo-
ment, as we find that all members of the Fe-Co fam-
ily of alloys have nearly constant magnetic moment per
atom, on the order of ∼ 2µB (see Table I). Therefore,
even though σxy can be used as a magnetic order sig-
nature, one is not necessarily proportional to the other.
As discussed earlier, the role of the magnetic order here
is only to break the time-reversal symmetry, while the
magnitude and spectral properties of σxy are driven by
the spin-orbit interaction of electron bands close to the
Fermi level.

Comparing the band structure of all Fe-Co ordered al-
loys we studied, we find that the overall band structure
has not changed much, but only the position of the Fermi
level relative to the rigid band structure is increasing with
the addition of Co. Therefore, we attribute the changes
in the σxy of Fe-Co alloys to changes in the relative po-
sition of the Fermi level, and not to changes in the band
structure itself.

C. Fe-Al alloys

Next, we discuss the calculated σxy in Fe-Al alloys.
Our results are shown in Fig. 3. Since Al is non-magnetic,
the σxy response is, by symmetry, zero at all frequencies.
When Al is introduced, the σxy response of Fe3Al lies
between that of pure Fe and Al, as expected. However,
unexpectedly, when the Al concentration reaches 50%,
σxy response of FeAl changes sign in the entire frequency
range from 0 to 20 THz. We ensured that, in all of these
cases, the Fe and Fe-Al alloys have magnetization point-
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FIG. 4. Calculated real part of σxy for bcc Co, D03 Co3Al
and bcc Al as a function of ω.

ing in the same direction. A similar result is observed
in Co/Pd multi-layers in Ref. 48, where the sign of σxy

changes depending on the relative concentration of Co to
Pd.

D. Co-Al alloys

The next binary alloys we discuss are Co-Al alloys.
Results for these alloys are shown in Fig. 4. Our calcula-
tions find that CoAl and CoAl3 are not magnetic while
the Co-rich compound Co3Al is magnetic. At low fre-
quencies, below 10 THz, we find that σxy for Co3Al is
quite large, and somewhat constant, with the value of
∼ 500 (Ω cm)−1. However, above 10 THz, σxy is reduced
50-fold to only ∼ 10 (Ω cm)−1.

E. Fe-Co-Al ternary alloys

So far, we discussed the σxy response of binary alloys.
In what follows, we consider several Fe-Co-Al ternary
alloys. We kept the Al concentration at 25%, and var-
ied the relative concentration of Fe and Co. The results
for these alloys are shown in Fig. 5. The behavior of
Fe2CoAl is qualitatively similar to that of Fe3Al, so the
replacement of Fe with Co did not change qualitatively
σxy(ω). Quantitatively, we find that σxy is approximately
∼ 1.5 times lower in Fe2CoAl relative to Fe3Al. However,
with an even higher concentration of Co, as in FeCo2Al,
we find σxy(ω) which is qualitatively and quantitatively
different from other members of the Fe-Co-Al family of
compounds. In particular, we find an unusually small
σxy in FeCo2Al, around 80 (Ω cm)−1, that is almost in-
sensitive to the frequency ω in the entire range between
0 and 25 THz.
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FIG. 5. Calculated real part of σxy for D03 Fe3Al, D03
Fe2CoAl, D03 FeCo2Al and D03 Co3Al as a function of ω.

F. Optical conductivity and magnetic moment

As we discussed earlier, σxy is often taken as an optical
signature of magnetic order. Therefore, it is natural to
ask whether a material with a large magnetization will
also have a large σxy. Figure 6 shows the relationship
between σxy and the magnetic moment per atom for all
of the compounds we studied. For each compound we
show on the vertical scale of Fig. 6 the range of maximal
and minimal values of the calculated σxy in the range of
frequencies from 0 to 25 THz. As can be seen from the
figure, we find that in the case of Fe-Co alloys, the mag-
netic moments per atom are nearly the same, on the order
of ∼ 2 µB, but the σxy ranges from 150, all the way to
950 (Ω cm)−1. The same is true for the other compounds
we studied. The most drastic example is FeAl in which
σxy even changes sign relative to that of Fe. Therefore we
can conclude that materials with larger magnetic moment
do not necessarily have larger σxy. This is not too sur-
prising, as the large magnetization arises from the large
difference in population of dominantly spin-up and spin-
down bands. However, a large σxy in the low-frequency
regime relies on detailed information about spin orbit
split bands near the Fermi level.

G. Remaining components of the σ tensor

So far we have focused on the frequency dependence
of the real part of σxy in Fe-Co-Al ternary system. How-
ever, there are other changes to the conductivity tensor
induced by the magnetic order. These are the imaginary
part of the off-diagonal component σxy, as well as the
difference between the diagonal components of the con-
ductivity tensor along and perpendicular to the direction
of the magnetic moment, σzz − σxx.
We first briefly discuss the imaginary part of σxy which
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contributes to the magneto-optical Kerr effect, MOKE,
in addition to the real part of σxy. The imaginary part of
σxy is shown in the supplement for all the compounds we
studied. As expected from the Kramers-Kronig relation-
ship, the imaginary part of σxy is also strongly dependent
on both chemical composition and frequency. For exam-
ple, we find that the step-like spectral feature we found
for the real part of σxy in Co3Al is accompanied with
a single sharp feature in the imaginary part of σxy, at
nearly the same frequency (∼ 10 THz), as one might ex-
pect. Similarly, sharp features in the imaginary part of
σxy we find in the case of Co and Fe3Al. The spectral fea-
tures of the imaginary part of σxy are much more complex
for the other compounds we studied. This is particularly
true for alloys containing Fe magnetic atoms.

For completeness, we now analyze the remaining com-
ponent of the conductivity tensor that depends on the
presence of the magnetic order. By symmetry, magneti-
zation along the z axis introduces a spin-orbit driven dif-
ference between the σzz (along the magnetization axis)
and σxx = σyy (perpendicular to the magnetization axis).
While the difference σzz −σxx does not contribute to the
magneto-optical Kerr effect (MOKE) it does contribute
to the second order change in the birefringence (Voigt
effect). While σxy is zero without magnetic order, the
diagonal components σxx = σyy and σzz are not. There-
fore, here we don’t focus on these diagonal components
individually, but instead we focus on their difference,
σzz − σxx. The calculated values of σzz − σxx for all
compounds we studied can be found in the supplement.
Again, we find strong variations of σzz − σxx both as a
function of frequency and as a function of chemical com-
position. In the case of the Fe-Co family of compounds,
we find that σzz −σxx in Fe and FeCo have a sharp peak
around 15 THz, and are nearly zero below 14 THz. Co
shows two sharp features, with opposite signs, one at
around 9 and another around 20 THz. The addition of
25% of Al to Fe strongly changes the value of σzz − σxx.
While Fe has a sharp feature around 15 THz, Fe3Al has a
sharp feature around 3 THz. The addition of even more
Al, as in FeAl, introduces two sharp features, at around
10 and 15 THz. The addition of Al to Co also intro-
duces significant qualitative and quantitative changes to
σzz − σxx.

IV. DISCUSSION AND CONCLUSION

We find a strong dependence of σxy(ω) in the tera-
hertz frequency range for Fe-Co-Al ordered alloys. For
example, in the case of Co3Al we find a nearly 50-fold re-
duction in σxy(ω) above 10 THz as compared to σxy(ω)
below 10 THz. On the other hand, in the case of FeCo2Al
we find a nearly constant σxy(ω) in the entire range from
0 to 25 THz. Furthermore, we also find a strong de-
pendence of σxy(ω) on the chemical composition. For
example, the addition of Al to Fe can change the sign of
σxy(ω), so that σxy(ω) is positive in Fe and Fe3Al but
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FIG. 6. The summary of σxy in the range of 0.0–0.1 eV and
magnetic moment per atom of each metal and alloy. The bar
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0.0–0.1 eV.

negative in the case of FeAl. Similarly, the addition of
Co to Fe produces a nonmonotonic dependence of σxy(ω)
on Co concentration. As an example, σxy(ω) in FeCo is
about 4 times smaller than in Fe and 3 times smaller than
that in Co. We attribute both of these strong variations,
with frequency and composition, to the subtle changes
in the electronic structure induced by the presence of
the spin-orbit interaction. However, unlike in the case
of AHE, the analysis of the origin of σxy(ω) is addition-
ally complicated by the fact that the Kubo expression
for σxy(ω) involves a transition between empty and oc-
cupied states, while in the case of AHE σxy(ω = 0) can
be written as integral of the Berry curvature over occu-
pied set of bands. Therefore, we leave a more detailed
analysis of the origin of these strong variations of σxy(ω)
to future studies. Here we only briefly comment on the
relationship between σxy(ω) and the changes in the elec-
tron bands caused by the spin-orbit interaction. In the
supplement we report the joint density of states (JDOS)
with and without inclusion of the spin-orbit interaction.
We find that whenever σxy(ω) experiences a large change
as a function of ω, there is a corresponding spike in the
JDOS due to the inclusion of the spin-orbit interaction.
Therefore, the gaps in the electron spectrum induced by
spin-orbit interaction are well correlated to σxy(ω), as
expected.

Our calculations are performed in the limit of infinite
electron lifetime. While this is justified for materials with
moderate amount of disorder, with diagonal conductiv-
ity around 104–106 (Ω cm)−1, we leave for future work
discussion of role of disorder on σxy(ω) in the terahertz
range for materials that are not within the moderate
range of disorder. We expect that at low enough fre-
quencies the phenomenology of σxy(ω) will be the same
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as that of σxy(ω = 0), so that with a moderate amount of
disorder the dominant contribution to σxy(ω) is intrinsic,
but with less disorder scattering from impurities start to
dominate.1 We show in supplement σxy(ω) with approx-
imately incorporated effect of the finite carrier lifetime.
While the finite carrier lifetime approximation washes
out some of the spectral features in σxy(ω), we still find
that many qualitative characteristics remain, such as the
change in sign of σxy near 20 THz, or the sharp de-
cline in σxy in Co3Al around 10 THz, or non-monotonic
dependence of σxy of Co concentration in Fe-Co alloys.

Our findings indicate that alloys such as Fe-Co-Al
would be of interest in the creation of magnetic optical

metamaterials in which the direction of magnetic mo-
ment and chemical composition are used to control its
interaction with light.
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